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Advanced Combustion 

 Integrated multi-scale computational approach, complimented with a 
focused experimental program, emphasizing the design & optimization 
of materials for advanced combustion systems. 
 

 Computational material design &  

 optimization. 

 Lab-scale synthesis of materials. 

 Mechanical & chemical  

 assessment of materials 

 performance in real environments 

 Simulation of component life in  

 conventional & oxy-fuel 

 combustion environments. 



New Energy Generating Technologies and High-
Temperature Structural Materials 
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• Lack of experience with alloy performance in these extreme 
conditions and times scales necessary for advanced FE systems 

• Need for reliable and fast methods for predicting materials 
performance.  

• Integrated computational and focused experimental approach.  
 

 

 Advanced FE systems 
– Extreme environment 

(corrosive,T,P) 

– Components have to last 
10,000’s to 100,000’s 
hours 
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Dominant Oxidation Theories 

Cabrera-Mott Theory (thin-film) 
 
Wagner Theory (thick-film) 
 
Deal-Grove Theory (Silicon) 

C-M Theory  
• Space charge 

neglected 

• Thermal electron 
emission or 
quantum tunneling 
effect  the rate 
limiting process  

Wagner Theory  
• Transport of ions/electrons across the 

film (due to electrochemical potential 
gradient) the rate limiting process 

• Local charge neutrality (Space charge 

neglected) 

• Coupled-currents assumption 

D-G Theory 
• Diffusion of neutral 

species in the scale 

• Steady state diffusion 

• Interface reaction rate 
limiting  or diffusion 
limiting process 



Gaps in Existing Oxidation Theories 

C-M 
Theory 

Wagner 
Theory 

D-G 
 Theory 

Research Field Gap 
Charge carrying metal  

vs Silicon  

Uncharged species is just a strong 
assumption of charge neutrality. 
Charge carrying or not should not 
cause a gap in modeling. 

A general model should handle both! 



Gaps in Existing Oxidation Theories 

G-M 
Theory 

Wagner 
Theory 

Moderate  
film thickness 

Length scale gap  
(Debye length) 

(Atkinson, Review of Modern Physics, 1985) 

Moderate film thickness regime: 
The coupling of space charge and 
ionic diffusion with long-range 
electrostatic interaction has to be 
addressed – a tough problem. 



The Simplest Metal Oxidation 

Metal Oxide Gas 

M-O       O-G M-O                       O-G 

M+O2-=MO+2e- O2+4e-=2O2- 

e- 

O2- 

 Chemical reaction 

 Mass transport 

 Charge interaction 

 Evolving structure 

 Evolving electric field  

The coupling 
physics with 
no viable 
simplification 



Based on Goncharova’s sketch 

Two typical scenarios: Outward (a)  vs  Inward (b) Diffusion  

The Simplest Metal Oxidation: cont. 



External electric field altering silicon oxidation 
kinetics (Direct evidence of charge transport) 

(Jorgensen P., J.C.P. 1962) 

850 °C 

RETARDING FIELD 
(+ ELECTRODE) 

NORMAL  
OXIDATION 

ACCELERATING FIELD 
(- ELECTRODE) 

TIME (H) 

SQ
U

A
RE

 O
F 

TH
IC

KN
ES

S 
(C

M
2 /

10
10

) 



Empirical Rate Laws Observed for Metals 

• Linear law: w = k t  
Observed for metals at certain environments 
(chemical reaction to be rate limiting), e.g., Fe in 
CO+CO2 , Cr in H2O-H2 , Ti in H2O; or rapid 
breakaway oxidation (spallation of oxide scales) 

• Parabolic law: w2 = kt + C  
Common for metals at high temperatures with 
thick coherent oxides 

• Logarithmic rate: w = k log (Ct + A)  
or inverse logarithmic (1/w=A-k log(t)) Oxidation 
at early stage, typically <400°C; very fast oxidation 
at the start, then the rate decreases to a low value 

• Catastrophic at high T  
Rapid exothermal reactions, oxides are volatile, 
e.g. Mo, W, V  
 

Reference: Goncharova, Kofstad, Birks et al 

w – weight gain per unit area; or oxide thickness 
t  –  time  



Linear-Parabolic Rate Laws Transition 

Widely observed in metals and Si  
 

Linear regime for the thin film  
Parabolic regime when the film 
grows thick 
 
D-G Theory Explanation: Interface 
(surface) reaction rate limiting (thin 
film) to diffusion through the oxide 
rate limiting (thick film) transition 
 

Deal-Grove, J.A.P, 1965 

Are the same mechanisms responsible 
for the transition in metals oxidation 
with charged species?  
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Oxidation Model Description  
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(cf. Standard Deal-Grove oxidation model) 

Boundary condition: 
Metal phase: electric field inside a conductor should be zero. 
        (large mobility electrons + background cations)   
Gas phase: Diffusing species are prohibited to enter 
 



Governing Equations 

The electric field, satisfying Poisson’s equation, is 
solved by an efficient numerical scheme for 
arbitrary dielectric heterogeneity 
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Results: Linear-Parabolic Transition in Kinetics 
 

Can we capture the transition without  
any a prior assumptions? 

Deal & Grove, J.A.P. 1965:  assume steady state diffusion, 
without considering electric field 

(expected plot on a log-log plot) 



Multiscale Simulation: Linear-Parabolic Transition 
 

• Four different simulations 
at 4 length scales are 
combined together 
 

• Resembling ‘relay-race 
game’ in track and field 
 

• Excellent agreements at 
the “exchange of baton” 
zones  
 

• Continuous linear to 
parabolic transition 
 

 Reproducing classical Deal-Grove reaction-diffusion 
model (analytical) with explicit consideration of charge 
transport 
 



Multiscale Simulation: Linear-Parabolic Transition 
 

Overall growth kinetics Initial stage growth kinetics 
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Simulated space charge and electric field 
distribution (c.f. Wagner theory) 

• Charge neutrality is satisfied in 
bulk area outside the diffuse 
layers (a few times of Debye 
length) 
 

• Coupled-currents assumption is 
satisfied except for the interface 
zones 
 

• Electric field in bulk oxide has 
finite magnitude 
 

• Electric field magnitude 
decreases with increasing film 
thickness  



Electric field distribution with excess surface charge 
(mild influence on oxidation kinetics) 

• Space charge only partially screens 
surface charge even there exists 
significant surface charge  
 

• Space charge may enhance surface 
charge with weak surface charge 
 

• Mean electric field in the bulk zone 
is stable and of finite magnitude - 
responsible for mediating different 
mobilities of ions; different from 
conventional Debye screening  
 

• Coupling between electrostatic 
interaction, mass diffusion and 
chemical reaction is inseparable 

( ) (1 ) (1 )s
f I IIρ σ ζ ζ σ η η= − + −



Interfaces with Environment Characterization Task 

Oxidation Modeling 

• Diffusivity Data 
• Solubility Data 

Characterization Task Provide Critical Input Data for Oxidation Modeling and 
Validate Predicted Kinetics 

0 / 25x l∆ =
0 / 6x l∆ =
0x l∆ =

Validate Kinetics 

Provide Input 



Summary 
• Developed a phase-field oxidation model. The 

model takes into account reaction-diffusion 
and charge interactions, which is the key to 
explain the kinetics in an intermediate length 
scale (nm to µm).  

• The continuous linear-parabolic transition is 
captured by computer simulation, compared to 
the standard Deal-Grove model. The local 
charge neutrality condition of Wagner theory is 
asymptotically satisfied at thick film stage. -
Unified explanation for Wagner theory and 
Deal-Grove theory.  
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2nd Phase Pinning 

Carbide Precipitations  in 9Cr Steel (left) and  

3D reconstructed M23C6 in COST B2 steel (right) 

Courtesy of Mitsu Murayama at VirginiaTech  



Zenner Particle Pinning Theory 
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Lattice coherency of pinning particles 
 Coherency loss  
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Pinning Force for an Ellipsoid Particle 
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Comparison with Theory for Spheroid Particles  
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Particle Spacing (volume fraction) Effect   

Well separated:  

4/max πθ =

RL 2>>

Close neighbor:  

4/max πθ <

RL 2~

Cannot reach maximum pinning angle due to the constraint of 
inter-particle surface shape  



Volume Fraction Effect for Spherical Particles   

Smaller pinning force from close neighboring particles  



Summary 

• First quantitative evaluation for coherent particle 
pinning force 

• New piece of particle pinning theory with spheroid  

• Theoretical prediction of large volume fraction pinning 
force confirmed by Phase-field simulations 

 Future works 

• Misfit strain effect for coherent/incoherent interface 

• Grain growth modeling with pinning particles 
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