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Pressure difference between suction and 
pressure side causes: 
 
•Systems of secondary vortices 
•Generation of induced drag forces 
•Total pressure reduction 
•Secondary flow losses 
•Efficiency decrease 

 

I Introduction: Endwall Secondary Flow Loss Reduction 
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I Secondary Flow Loss Reduction 

Effective methods for reducing the secondary flow losses at the  
turbine hub and tip:  
 

 Special design:Fully-3D blades with compound lean: 
  Very effective  used in advanced HP-Turbines (TPFL-R&D) 
 

 Specially designed stator blades insensitive toincidence change 
when turbines operate at off-design conditions with incidence 
change from - 30o to + 30o  (TPFL-R&D) 

 Endwall contouring (new method introduced by TPFL)  
 

 Rotating blade tip ejection (new blade ejection configuration) 
 

 Filleting also contributes to secondary flow reduction, but   
    restricted 
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I Endwall Contouring Design  

Zweifel coefficient guides designer, how to contour the endwall 
 
 Determine the Zweifel Coefficient ΨA 

 

 Is ΨA  <  1 : A single continues diffusion process sufficient  
 

  Is ΨA  >  1:  Requires a compound diffusion process  
 

The magnitude of ψΑ decides how the contouring should be designed. Based on 
the particular blade design, a system of diffusion process similar to the above 
can be designed such that the pressure difference between the suction and 
pressure side is reduced by a compound contouring. This requires designing a 
positive contouring (hills) followed by a negative contouring (valleys) for each 
target pressure.  The design process is the same as detailed above. 
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I Endwall Contouring Design  

Zweifel coefficient  how to contour the endwall 
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I Breakthrough Technology,  Disclosure of Invention TAMUS 3259  
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 I Endwall Contouring Applied to First and Second Rotor Hub   

Front Bearing 
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gap 

Labyrinth Seal 

Stator 
Cavity/Plenum 

Rear Bearing 
Housing 

Groove for  
Stator seals  

Rotor 2 
Shoulder  



Project DE-FOA-0000031 
October 2012 

 
 

 
TPFL: The Turbomachinery Performance and Flow Research Laboratory 

Texas A&M University 
M. T. Schobeiri 

I Concept Validation: Second Rotor Endwall Contoured 

Rotor:   Three-stage  
Contoured:  Second rotor hub  
Predicted  η T-S  = 89.33% 

ηcontoured= 89.9%

∆η =1.04%
ηnoncontored =88.86
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I Effect of MFR on Rotor Efficiency 
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Cause of the above over prediction: 
1) Lack of appropriate transition model 
2) Deficient dissipation model  
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I Efficiency and Performance Deterioration with Purge  

RPM

M
as

s
Fl

ow
(K

g/
s)

1800 2000 2200 2400 2600 2800 3000
3.80

3.82

3.84

3.86

3.88

3.90

MFR=0.0
MFR=0.5
MFR=1.0
MFR=1.5
MFR=2.0

Efficiency  as a function of  u/c0  (left) and rpm (right) with MFR as a parameter   

Max. Efficiceincy at MFR = 0.0:
ηT-S= 89.9%

u/c0

η T-
S

0.4 0.6 0.8 1.0 1.2
0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

MFR=0%
MFR=1%



Project DE-FOA-0000031 
October 2012 

 
 

 
TPFL: The Turbomachinery Performance and Flow Research Laboratory 

Texas A&M University 
M. T. Schobeiri 

II: Impact of Endwall Contouring, Purge Injection on Film Cooling 

Design constraints dictated by the existing turbine hardware:  
 Film cooling measurements with pressure sensitive paint 

had to be performed on the endwall of the first rotor row 
because of optical access for CCD-Camera     

 First rotor row is directly exposed to purge flow injection 
 No possibility to extend the contouring upstream of the 

blade leading edge   
 Contouring had to start immediately at the leading edge 
 This constraint required particular attention to the endwall 

contouring design  
 



Project DE-FOA-0000031 
October 2012 

 
 

 
TPFL: The Turbomachinery Performance and Flow Research Laboratory 

Texas A&M University 
M. T. Schobeiri 

II: Endwall Contouring Design for First Rotor 

 Endwall contouring for first rotor is constrained between LE, TE 
due to the existence of ejection slot lip . 
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L
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T
E 

Endwall 
Contourin

g 

2nd rotor ring extended upstream to ensure  
efficeincy improvement. 

No space for upstream extension of first rotor  
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II: Endwall Contouring Design of First Rotor Row 
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II: Endwall Contouring Using Target Pressure Difference 
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Results: First Stage Rotor Endwall Contouring 
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 II: Purge Flow Injection, Endwall Contouring, Film Cooling   

Effect of purge flow Injection on aerodynamic performance and film cooling 
effectiveness on a rotating turbine with and without endwall contouring is 
numerically investigated.  Following steps were performed: 

A grid was generated, its density optimized to ensure grid 
independence results. It starts from: 

 Rotor cavity 

 Turbine inlet,  

 Followed by the first rotor row (contoured) 
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II: Purge Flow Injection, Endwall Contouring, Film Cooling 

 

Mainstream Flow 

Purge Flow Loop 
for Endwall 

C li   

Platform Discrete Hole 
Film Cooling 

Number elements: 2M 
Total elements: 9M  
Number of nodes: 22 at the wall 
Numerical simulation: RANS (CFX) 
Turbulence model: SST 
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II: Interaction of Endwall Contouring with the Cavity 

Temperature distributions within the cavity at three circumferential positions 
and MFRs  
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(b) (e) 

  
(c) (f) 
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II: Results: First Rotor Endwall Exposed to Flow Injection 

 

 

 

  

 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

 

Pressure distribution at 0% span:  
 

Reference case with different mass flow 
ratios  

 
(a) Reference case with MFR=0%  
(b) Reference case with MFR=0.5%  
(c) Reference case with MFR=1.0%  
(d) Reference case with MFR=1.5%  

 
New contouring with different mass flow 
ratios  

 
(e) New contouring with MFR=0%  
(f) New contouring with MFR=0.5%  
(g) New contouring with MFR=1.0%  
(h) New contouring with MFR=1.5%. 

MFR=0% MFR=0.5% MFR=1.5 % MFR=1.0 % 

MFR=0% MFR=0.5% MFR=1.5 % MFR=1.0 % 
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II: Temperature Distribution Contour at 0% Span 

MFR=0% MFR=0.5% MFR=1.5% MFR=1.0% MFR=2.0% 

Rear edge of gap 
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II : Purge Flow Injection, Film Cooling Effectiveness  

Effectiveness Distribution  
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(d) (e) (f) 
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Pressure distribution at 0% span:  
 

Reference case with different mass flow ratios  
(a) Reference case with MFR=0%  
(b) Reference case with MFR=0.5%  
(c) Reference case with MFR=1.0% (d) Reference 
case with MFR=1.5%  

 
 
 
New contouring with different mass flow ratios  

 
(e)  New contouring with MFR=0%  
(f)  New contouring with MFR=0.5%  
(g) New contouring with MFR=1.0%  
(h) New contouring with MFR=1.5%. 
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II Experimental Results: Film Cooling Under Purge Flow 

 Pressure sensitive paint (PSP) is used to measure the film cooling 
effectiveness  on the 1st rotor row endwall.  

  The paint is first calibrated under different pressure and temperature 
conditions.   

 Endwall test cases (completed, ongoing)  

 Reference Case: 2400 rpm, 2550 rpm and 3000 rpm (Completed) 

 Contoured case: 3000 rpm, MFR=1 (Competed) 

  MFR=0.5, 1.5 (Ongoing) 

The process will be repeated for 2400 rpm and 2550 rpm  
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PSP - Calibration 
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 II: Experimental Facility 

 Block diagram of the experimental facility 
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II: PSP Measurement Technique 

 PSP measurement methodology 

 Pressure variation 

Pressure measurement 

Intensity measurement 

Light intensity change 

Oxygen 
Quenching 

Calibration 
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 II: Results, Contoured vs. Non-contoured 

2550 rpm 3000 rpm 

Completed:   
MFR = 1.0 at 3000 rpm 
 
In progress:  
MFR = 0.5, 1.5, 2.0 
 
October 2012-
Experiments at 2400, 
2550 rpm and the above 
MFR 
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III: Blade Tip Film Cooling  

Major body of publicly available literature relative to tip clearance 
aerodynamics and heat transfer deal with stationary cascade flow.  

SSPS

Tip clearance

Corner
vortices

Hub-endwall vortices

Tip- endwall vortices

vortices

δ

PS SS

δ

Free vortex system

Bound vortices

PS

vortices

SS

Corner

δ
vortices
Hub clearance

Unshrouded rotor blades Unshrouded stator blades

Non-rotating cascade:  
Fluid particles move from pressure 
to suction surface and build a 
system of bound vortices.    

From: M.T. Schobeiri: Turbomachinery Flow 
Physics and Dynamic Performance, 2nd Edition,  
Springer Verlag, 2010 
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Results – Film Effectiveness on Plane Tip, Combinations 

T 

P 

T 
P 

From: 
Han et al. 
GT-2004-53249 

η Conventions 
T-C10-05 Means 
T = Top ejection 
C10 =  1.0% Clearnce 
05 = Blowing ratio of 0.5 
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II: Purge Flow Injection, Endwall Contouring, Film Cooling 

 

Mainstream Flow 

Purge Flow Loop 
for Endwall 

C li   

Platform Discrete Hole 
Film Cooling 

External cooling loop provides cooling fluid (air, N2)  to blades 
with tip ejection holes  
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Prediction of  Plane Tip with Tip Hole Cooling 

Computational domain includes the 
first stator (S1), first rotor (R1) and 
second stator (S2). 

Mesh at blade tip with seven 
perpendicular cooling holes along the 
mean camber Line. 
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Ongoing Research Work: Blade Tip Film Cooling 

 Four pairs of blades with different ejection hole geometries 
are attached to the hub  

 Blades with identical geometry are arranged diametrically 

Coolant injected from external loop 
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The coolant flow is injected from the bottom of the bolt and then 
diffuses into the plenum through radially distributed holes near bolt tip. 
Finally the coolant flow is ejected through the cooling holes. 

Film Cooling with Ejection Holes at Blade Tip 



Project DE-FOA-0000031 
October 2012 

 
 

 
TPFL: The Turbomachinery Performance and Flow Research Laboratory 

Texas A&M University 
M. T. Schobeiri 

III: Prediction of  Plane Tip with Tip Hole Cooling 

Adiabatic Film Cooling Effectiveness 
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III: Difference between Stationary and Rotating Cascade 

This simple sketch shows what will change when the stationary 
 blade start rotating 
 

SSPS

Tip clearance

Corner
vortices

Hub-endwall vortices

Tip- endwall vortices

vortices

δ

PS SS

δ

Free vortex system

Bound vortices

PS

vortices

SS

Corner

δ
vortices
Hub clearance

Unshrouded rotor blades Unshrouded stator blades

Rotating cascade:  
Fluid particles move from the suction to 
pressure surface and push the cooling 
jet away from the blade tip.    
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Prediction of  Plane Tip with Tip Hole Cooling 

Streamlines in rotating frame at blade tip region 

(a) Tt, coolant=318K (b) Tt, coolant=300K (c) Without film cooling 
Note: The red streamlines mark the hot mainstream flow, while the blue ones mark the  
           film cooling. 
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Prediction of  Plane Tip with Tip Hole Cooling 

(a) Tt, coolant=318K (b) Tt, coolant=300K (c) Without film cooling 

Pressure distribution at blade tip 

High 

Low 

M=1.0, 3000 rpm 
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Prediction of  Plane Tip with Tip Hole Cooling 

(a) Tt, coolant=318K (b) Tt, coolant=300K (c) Without film cooling 

Adiabatic wall temperature distribution at blade tip 

M=1.0, 3000 rpm 
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Prediction of  Plane Tip with Tip Hole Cooling 

Distribution of adiabatic film cooling  
effectiveness at blade tip 

M=1.0, 3000 rpm MFR fraction of each cooling hole 



Project DE-FOA-0000031 
October 2012 

 
 

Conclusions 
I Endwall contouring 
 Applying the new, physics based endwall contouring method to the 

second rotor row of an existing three-stage turbine with six rows, an 
increase of ∆η  = 1.04% has been achieved, which is above the predicted 
∆η = 0.68% .  

 The method is equally applicable to gas and steam turbine. In context of 
IGCC, the application of the endwall contouring to a 16-stage 200 MW 
HP-bottoming unit will improve the efficiency up to 4%.  

II: Purge Flow Injection  

 Due to the existence of the circumferential ejection slot for purge flow, 
the contouring for the first rotor could not be extended upstream. As a 
result, an efficiency increase close to 0.4% was gained for first rotor. 

 Starting with the reference turbine, the purge mass flow ratio (MFR) was 
varied from 0% to 2.0%. While the cooling effect increases, with 
increasing MFR, the turbine efficiency decreases as expected, which is 
due to the enhanced mixing process between the coolant ejection and the 
main stream and accordingly more aerodynamic losses are generated.  

 
 

TPFL: The Turbomachinery Performance and Flow Research Laboratory 
Texas A&M University 

M. T. Schobeiri 
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Prediction of  Plane Tip with Tip Hole Cooling 

II First rotor row under exposed to purge 

No substantial changes in efficiency and film coverage compared to 
non-contoured reference case.  

III Blade Tip Ejection 
The film cooling under rotating condition is distinctively different from the one 
without rotation. Thus, the arrangement of the holes their location and ejection 
angle must be based on the rotational condition. 
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Thanks for Your Time 
and Attention.  
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