Oil & Natural Gas Technology

DOE Award No.: DE- FE0013961

Quarterly Research Performance Progress Report
(Period ending 09/30/2014)

Borehole Tool for the Comprehensive Characterization of Hydrate-Bearing Sediments

Project Period (10/1/2013 to 9/30/2016)

Submitted by:
J. Carlos Santamarina

Georgia Institute of Technology
DUNS #: 097394084
505 10th street
Atlanta, GA 30332
e-mail: jcs@gatech.edu
Phone number: (404) 894-7605

Prepared for:
United States Department of Energy
National Energy Technology Laboratory

Submission date: 10/31/2014

Office of Fossil Energy
DISCLAIMER:

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
ACCOMPLISHMENTS

Context – Goals. The determination of physical properties for hydrate bearing sediments relies on correlations with geophysical measurements, and experimental data gathered on conventional and pressure cores; however, there are intrinsic uncertainty in correlations and inherent sampling disturbance and testing difficulties when hydrate bearing sediments are involved. This research focuses on the development of a robust borehole tool for the comprehensive characterization of hydrate bearing sediments in-situ, complemented with an IT tool for the selection of appropriate material parameters.

Accomplishments
The main accomplishments for this period include:

- IT tool (sub-task 2.1: Update database of hydrate-bearing sediment properties)
  - Added uncertainty analysis
  - Improved interface
- Borehole tool (sub-task 3.2 and 3.3: Preliminary mockups)
  - Module developments: Force module
  - Module developments: Permeability
- Construction: Sampler
  - Borehole tool (sub-task 4.1: Electronics)
    - High resolution: temperature, strain gauges and force/pressure transducer
    - Stand-alone system
  - Borehole tool (sub-task 4.2: Lab Testing)
    - Force module
    - Permeability tests
    - Sampler
    - Electrical resistivity module

**Plan - Next reporting period**

Improve the interface and the models for IT tool and finish user’s manual. Stand-alone impedance analyzer for electrical resistivity measurements.

**Research in Progress**

**Borehole Tool: Sensors**

The borehole tool is a train of modules, machined in stainless steel 316 for its high corrosion and stress resistance. The tool couples to the drill string and bottom hole assembly BHA. Penetration is based on the weight of the drilling rods (either actively pushing or passive reaction). Carious calibrations were performed during this quarter.

**Force module**

The penetration module consists of three parts: the penetration body, tip and sleeve. The sleeve houses strain gauges and sensors. Figure 1 shows the force calibration test conducted in a high pressure chamber. Water pressure and force resistance are measured during this calibration.
Figure 1. Force module calibration tests for water pressure and tip resistance.

A near surface field test was performed to check the performance of the tip resistance in sediments (beach sand in Lake Acworth, GA). The portable reaction frame includes three self-driven helicoidal anchors, an Enerpac hydraulic piston and a load cell.

The load cell resistance and the tip resistance measured with the force module are compared in Figure 2: results show excellent agreement.
Sub-components for permeability measurements, fluid sampling and in-situ production test were redesigned to attain a simpler and more robust configuration (Figure 3). The fluid sampler will be filled with an inert gas at a pressure slightly higher than the dissociation pressure for methane hydrate so that fluid sampling will not cause dissociation; the solenoid valve will be activated to allow water invasion into the sampler driven by the higher reservoir pressure. The pressure transducer will monitor the change of pressure in time to assess flow rate vs. time (see also design by Tortenson 1984). Permeability computations will follow.
Figure 3: Hydraulic system. a) hydraulic measurement system and fluid sampler; b) mini production test.

The porous ring above the cone tip works as a filter and is used for water pore pressure measurements, fluid sampling and gas production. Several porous filters have been tested using pressure control and flow control protocols. Filter types include a standard plastic commonly used in geotechnical in-situ tests, and three grades of sintered stainless steel SSS beads (MOTT corporation - denominations: 100, 40 and 20). Test results were compared to numerical simulations. Figure 4 shows test results and corresponding numerical simulations. In all cases, the filters exhibit very high permeability ($> 10^{-3}$ cm/s).
Figure 4: Porous filter calibration: a) setup of the two types of control tests: flow control and pressure control-based test, b) Results for different porous filter. Lines represent results from numerical simulations and discrete points, the corresponding from tests.

A permeability test was conducted for the case of water and no soil, in order to determine the head loss across the device. Test duration must exceed 100 sec to gather reliable data (Figure 5).
Figure 5: Permeability test: a) set-up; b) results for different porous filters.

Sampler
The insitu device includes two samplers next to it. A prototype was constructed to assess performance. It consists of a 60cm long, diameter OD=25mm sampler tube, a sharp cutting shoe, a plane catcher, and an extrusion device (Figure 6).

A field was conducted to review its performance compared with a standard pipe test (sandy beach, Lake Acworth, GA). Tests involve steady state continuous push and dynamic penetration (Figure 7).
Figure 6: Sampler: a) location; b) dimensions; c) picture and d) extrusion device.

Figure 7: Experimental study: a) continuous push schematics; b) hammering; c) continuous push picture on site; d) samplers dimensions.
Figure 8 shows the results of the sampled length and penetration force used in each case. Observations follow:

- The dynamic driving allows for higher sample length without plugging.
- The cutting shoe favors longer samples: The internal diameter reduction hinders/delays the development of friction against the internal wall.
- Force penetration results shows strong similarity between the two samplers.

**Figure 8**: Field test results: a) dynamic and pushing sampled lengths and b) penetration force.
Electrical resistivity module

The electrical module was constructed as a “button” measurement type: made of PEEK plastic as electrical isolator. Calibration test results conducted with salt solutions show good agreement with table-top resistivity measurements (Figure 9).

Figure 9: Electrical resistivity module: General schematics, picture and calibration.
Electronics

A new analog to digital converter A/D was tested to increase temperature and transducer resolutions. Figures 10-a, -b and -c show the tests ran with this new circuitry and its resolution on time. Results show a good resolution output for thermocouples, and load cells readings, but strain gauges are still inaccurate.

Figure 10-d shows the power consumption of the stand-alone system for different sensors and transducers. Time can be estimated for a standard 9V battery with a 400 mAh capacity.

![Figure 10](image)

**Figure 10:** Resolution of the stand-alone system and power consumption: a) resolution of the thermocouple measurement; b) strain gauges resolution measured in stress; c) standard load cell resolution; d) power consumption for each component. Most of the consumption is taken by the system itself: Arduino and SD card writer procedures.
## MILESTONE LOG

<table>
<thead>
<tr>
<th>Title</th>
<th>Planned Date</th>
<th>Verification method</th>
<th>Completion Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completion PMP</td>
<td>November 2013</td>
<td>Report</td>
<td>11/2013</td>
<td></td>
</tr>
<tr>
<td>Insertion – Tool design</td>
<td>September 2014</td>
<td>Report</td>
<td>9/2014</td>
<td></td>
</tr>
<tr>
<td>Electronics in operation</td>
<td>January 2015</td>
<td>Report</td>
<td>In progress</td>
<td></td>
</tr>
<tr>
<td>Lab testing of prototype</td>
<td>September 2015</td>
<td>Report</td>
<td>In progress</td>
<td></td>
</tr>
<tr>
<td>Tool deployment</td>
<td>Before September 2016</td>
<td>Report</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### PRODUCTS

- **Publications – Presentations**: None at this point
- **Website**: Publications and key presentations are included in [http://pmrl.ce.gatech.edu/](http://pmrl.ce.gatech.edu/). (for academic purposes only)
- **Technologies or techniques**: None at this point.
- **Inventions, patent applications, and/or licenses**: None at this point.
- **Other products**: None at this point.
PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS

Research Team: The current team is shown next. We anticipate including external collaborators as the project advances.

<table>
<thead>
<tr>
<th>PI: J. Carlos Santamarina</th>
<th>Admin. Support: Rebecca Colter</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhD #1 Marco Terzariol</td>
<td>PhD #2 Zhonghao Sun</td>
</tr>
<tr>
<td>URA David Rhodes</td>
<td></td>
</tr>
</tbody>
</table>

IMPACT

None at this point.

CHANGES/PROBLEMS:

None at this point.

SPECIAL REPORTING REQUIREMENTS:

We are progressing towards all goals for this project.

BUDGETARY INFORMATION:

As of the end of this research period, expenditures are summarized in the following table (Note: in our academic cycle, higher expenditures typically take place during the summer quarter):
<table>
<thead>
<tr>
<th>Baseline Reporting Quarter</th>
<th>Budget Period 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q1</td>
</tr>
<tr>
<td></td>
<td>10/1/13 - 12/31/13</td>
</tr>
<tr>
<td>Q1 Cumulative Total</td>
<td></td>
</tr>
<tr>
<td>Q2 Cumulative Total</td>
<td></td>
</tr>
<tr>
<td>Q3 Cumulative Total</td>
<td></td>
</tr>
<tr>
<td>Q4 Cumulative Total</td>
<td></td>
</tr>
</tbody>
</table>

**Baseline Cost Plan**
- Non-Federal Share: 13,326, 13,326, 13,327, 26,653, 13,327, 39,980, 39,980
- Total Planned: 48,062, 48,062, 48,063, 96,125, 48,063, 144,188, 34,736, 178,924

**Actual Incurred Cost**
- Federal Share: -20,865, 20,865, 45,109, 69,650, 55,929, 125,579
- Non-Federal Share: -20,865, 20,865, 85,089, 109,630, 55,929, 165,558
- Total Incurred Costs: -20,865, 20,865, 85,089, 109,630, 55,929, 165,558

**Variance**
- Federal Share: -34,736, -34,736, -13,871, -48,607, 10,373, -34,558, 21,193, -13,365
- Non-Federal Share: -13,326, -13,326, -13,327, -26,653, 26,653, 0, 0, 0
- Total Variance: -48,062, -48,062, -27,198, -75,260, 37,026, -34,558, 21,193, -13,366
National Energy Technology Laboratory

626 Cochrans Mill Road
P.O. Box 10940
Pittsburgh, PA 15236-0940

3610 Collins Ferry Road
P.O. Box 880
Morgantown, WV 26507-0880

13131 Dairy Ashford Road, Suite 225
Sugar Land, TX 77478

1450 Queen Avenue SW
Albany, OR 97321-2198

Arctic Energy Office
420 L Street, Suite 305
Anchorage, AK 99501

Visit the NETL website at:
www.netl.doe.gov

Customer Service Line:
1-800-553-7681