Improving Gas Well Drilling and Completion with High Energy Lasers

Brian C. Gahan Gas Technology Institute

Drilling for Oil and Gas in the US

ati

Drilling for Oil and Gas in the US

Drilling for Oil and Gas in the US

1990 GRI Study on Drilling Costs

Major Categories	% of Total Time
Making Hole	48
Changing Bits And Steel Casing	27
Well & Formation Characteristics	25
Total Drilling Time	100%

High-energy Laser Applications

Lasers could play a significant role as a vertical boring & perforating tool in gas well drilling

System Vision

- Laser on surface or within drilling tubing applies infrared energy to the working face of the borehole.
- The downhole assembly includes sensors that measure standard geophysical formation information, as well as imaging of the borehole wall, all in real time.
- Excavated material is circulated to the surface as solid particles

System Vision

- When desired, some or all of the excavated material is melted and forced into and against the wall rock.
- The ceramic thus formed can replace the steel casing currently used to line well bores to stabilize the well and to control abnormal pressures.

System Vision

- When the well bore reaches its target depth, the well is completed by using the same laser emergy to perforate through the ceramic casing.
- All this is done in one pass without removing the drill string from the hole.

Laser Product Development

Laser FE

Laser Drilling Assist Laser Perf

Off Ramp: Perforating Tool

- Proposal Submitted to Service Industry Partner
- Purpose
 - Complete or re-complete existing well using laser energy
- Requirements
 - Durable, reliable laser system
 - Energy delivery system
 - Purpose designed downhole assembly

Preliminary Feasibility Study

- Laser Drilling Experiments 11/97
 - Basic Research 2 years
- Three High-Powered Military Lasers
 - Chemical Oxygen Iodine Laser (COIL)
 - Mid Infra-Red Advanced Chemical Laser (MIRACL)
 - CO₂ Laser
- Various Rock Types Studied
 - Sandstone, Limestone, Shale
 - Granite, Concrete, Salt

MIRACL – Simulated Perf Shot

A two-inch laser beam is sent to the side of a sandstone sample to simulate a horizontal drilling application.

MIRACL – Simulated Borehole Shot

After a four-second exposure to the beam, a hole is blasted through the sandstone sample, removing six pounds of material.

GRI-Funded Study Conclusions

 Previous Literature <u>Overestimated</u> SE
Existing Lasers Able to Penetrate <u>All</u> Rock
Laser/Rock Interactions Are a Function of Rock and Laser (Spall, Melt or Vaporize)
Secondary Effects Reduce Destruction
Melt Sheaths Similar to Ceramic

Study Conclusions Indicate Additional Research is Warranted

Laser Drilling Team – Phase I

Gas Technology Institute DOE NETL Argonne National Laboratory Colorado School of Mines Parker Geoscience Consulting Halliburton Energy Services PDVSA-Intevep, S.A

Drilling With The Power Of Light

- DOE Cooperative Agreement DE-FC26-00NT40917
 - Original Proposed Tasks and Timeline

gti

First Phase (FY-01) Objectives

Accepted Phase 1 Task List

- 1. Laser cutting energy assessment
- 2. Variable pulse laser effects (Nd:YAG)
- 3. Lasing through liquids

gti

Phase I Laser: 1.6 kW Nd:YAG

Neodymium Yttrium Aluminum Garnet (Nd:YAG)

Conclusions: GTI/DOE Phase I

- SE for Shale 10x Less Than SS or LS
- Pulsed Lasers <u>Cut Faster</u> & With <u>Less</u> <u>Energy</u> Than Continuous Wave Lasers.
- Fluid Saturated Rocks Cut Faster Than Dry Rocks.
 - Possible Mechanisms Include:
 - More Rapid Heat Transfer Away From the Cutting Face Suppressing Melting
 - Steam <u>Expansion</u> of Water
 - Contributing to Spallation

Conclusions: GTI/DOE Phase I

- Optimal Laser Parameters Observed to Minimize SE for Each Rock Type
- Shorter <u>Total Duration</u> Pulses Reduce Secondary Effects from Heat Accumulation
- Rethink Laser Application Theory Rate of Application: Blasting vs Chipping
- Unlimited Downhole Applications Possible due to Precision and Control (i.e., direction, power, etc.)

DOE-GTI/NGOTP-ANL Phase 2 In Progress

Continuation of SE Investigations

- Effects at In-Situ Conditions
- Effects of Multiple Bursts and Relaxation Time
- Observations at Melt/Vapor Boundary

Supporting Slides Detailing Phase I Work

Laser Cutting Energy Assessment

- Measure specific energy (SE)
 - Limitation of variables
 - SS, shale and LS samples
 - Minimize secondary effects
 - Identify laser-rock interaction mechanisms (zones)
 - Spall, melt, vaporize

Just Enough Power

Conducted Linear Tests

- Constant Velocity Beam Application (dx)
- Constant Velocity Focal Change (dz)
- Five Zones Defined in Linear Tests
- Identified Zones Judged Desirable for Rapid Material Removal
 - Boundary Parameters Determined for Spall into Melt Conditions

Laser/Rock Interaction Zones

- Zone Called <u>Thermal Spallation</u> Judged Desirable for Rapid Material Removal
- Optimal Laser Parameters Were Determined to Minimize:
 - Melting
 - Specific Energy (SE) Values
 - Other Energy Absorbing Secondary Effects, and
 - Maximize Rock Removal
- Short Beam Pulses Provided "Chipping" Mechanism Comparable to Conventional Mechanical Methods

Zonal Differences

SE differs greatly between zones

- Shale shows clear SE change between melt/no melt zones
- Much analysis remains to understand sensitivities of different variables

QU

Lithology Differences

- Differences between lithologies more pronounced when secondary effects minimized
- Shale has lowest SE by an order of magnitude.
- Sandstone and limestone remain similar, as in CW tests

All ND:YAG Tests

SE Values: Wet vs. Dry Samples

Atmospheric Conditions