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ABSTRACT 
The RPSEA Simulator is a general purpose process simulator featuring minimal architectural overhead 
that puts all the functionality in user developed unit models.  The underlying goal is to remove all 
unnecessary impediments to allow the user full modeling license.  Hierarchical modeling is enabled by 
standardized unit model interfaces, arbitrarily expandable data structures, tag-based calls, and an 
organization that aids, if not enforces, documentation.  Pre- and post-processing statistics modules were 
developed. For validation a flow loop with a three-phase gravity separator was built, and a test matrix 
was executed with fresh and salt water, model oil and air.  The RPSEA Simulator was used to develop a 
separation simulator, the results of which were compared to test results from an experimental flow 
loop. 
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1 Project Overview 

1.1 Objectives 

The objective of this program is to produce a process simulation tool (Simulator) suitable for modeling 
Subsea Processing Systems (SPS) for oil and gas.  The intent is to 1) provide an industry standard to 
evaluate SPSs performance, and 2) help bridge TRL gaps between operation engineers and facility 
suppliers.  The program deliverables include simulation architecture, functional simulator, procedures & 
documentation, experimental validation, and experimental facility availability. 

 

Figure 1:  Program Overview 

The program can be divided into six objectives: 

Objective 1:  Develop a library of robust analytical models for compact separation devices operating in a 
subsea multi-phase flow environment.   

Objective 2:  Develop a robust process simulator combining the analytical models from Objective 1 in 
such a fashion to provide for the following major features: 
•        Prediction of both steady-state and transient performance 
•       Expandability at the component level to accept more accurate analytical component descriptions 
as they become available from ongoing research and experience 
•        User configurability 
•        Interface with existing upstream industry-standard production simulators 

Objectives 1 and 2 are accomplished by having unit models with standardized interfaces.  Unit models 
capture all aspects of modeling including hardware (demisters, coalescers, pipes, flow splitters, gravity / 
cyclonic separation spaces, valves, sensors, controls, etc.), physics (fluid and droplet behavior, 
emulsions, etc.) simulation controls, etc.—in fact these entities are not generally separable.  
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Standardized unit models accommodate this fact in how they allow the buildup of complex systems. 
Unit models can be employed at the root level or as sub-models within other unit models.  Hierarchical 
deployment facilitates simulation development and evolution, and zooming in complexity.  Figure 2 
depicts the development of component models from various sub-models.  They can utilize any 
combination of physics, empiricism, calls to external packages, etc.  Figure 3 shows the assembly of 
components into a SPS system.  In practice the definition of scope for unit models and their collections is 
arbitrary and can be done at the simulation developer’s convenience.  The core framework of the 
Simulator is minimal—the guts of the simulation and its operation reside in the unit models where the 
modeler has dominion. 

 

Figure 2:  Unit Model Hierarchy 
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Figure 3:  Assembly of models into a SSP system 

Objective 3:  Develop a lab-scale test facility and testing protocols for the validation of both the 
analytical models and the simulator performance.   This objective has importance for both developing 
unit models and validating the resulting system models, as well as the processes and methods used 
therein.  This objective has been accomplished through the creation of a test loop facility and its 
exercise.  The chosen test case is a horizontal three-phase (saltwater / oil / gas) gravity separator.   

Objective 4: Develop a methodology and associated procedures for using the Simulator to determine 
the operational envelope for various process designs.   This has been achieved through the development 
of a statistical methodology and toolkit in MATLAB that is described below in Section 4. 

 

Figure 4:  System performance characterization 

Objective 5:  Using the lab-scale test facility and protocol, validate the simulator performance by 
executing a test plan to evaluate over a wide range of conditions:  
•        Operating envelopes 
•        Transient stability 
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•        Process control logic 
The experimental campaign, methods, and results are documented in Sections 5. 

Objective 6:  Develop a technology transfer plan that will provide for rapid dissemination of the 
simulator including a plan to improve the simulator by incorporation of end-user feedback.  This is 
discussed in Section 6. 

1.2 Simulator Development Approach 
The key foundation of this work is the simulation architecture.  The architecture must be capable of 
supporting modeling present and future SPS incorporating models available now and to be developed in 
the future.  Owing to the great complexity of these problems, the architecture needs to be able to 
absorb new complexity and new understanding.  In fact, in conjunction with the statistical package and 
methods in Section 4, it can help develop new models from data.  It also needs to be able to vary 
modeling complexity and expense, both to higher levels for higher fidelity, and to lower levels to reduce 
computational expense, for example for executing Designs of Experiments (DOE).  The experimental 
aspects of this program are constrained, but the architecture must not be.  This is depicted in Figure 5. A 
constant check on process was made by brainstorming potential modeling challenges and insuring that 
the architecture could accommodate the challenge. 

 

Figure 5:  Simulation Architecture Objective 

Two codes were developed to expedite the development of the Simulator Architecture and a working 
version.  In the end, both have utility.  The first code, in MATLAB, was to develop the architecture and 
unit models, i.e. to attack the development problem from the “bottom up” fundamentals, starting 
simple and adding complexity.  The second code was developed to expedite the implementation of the 
full-on Simulator framework and high level features including property flashing, process simulator 
interface, security / revision control, and so forth.  This is the “top down” NPSS code.  The end goal was 
to roll the MATLAB unit models into the NPSS code for the finished product.  However, the MATLAB 
code has been fleshed out to be useful in its own right.  Both codes have their particular strengths but in 
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practice the concepts and models are portable between the two, and there are ways to implement most 
of the features of each into the other. 

1.3 Experimental Validation 
A horizontal three-phase gravity separator and a saltwater / oil / gas flow loop were built and used 1) to 
develop and tune unit models and 2) validate the overall simulation and associated methods.   The 
model development was done using steady operating states.  With these steady state models and 
additional models based on first principles, the Simulator ran transient cases which are compared to 
experimental data.  The experimental campaign is described in Section 5. 

2 MATLAB Simulator Version 

2.1 Objectives 
As mentioned above, the MATLAB code was developed to attack the simulation problem from the 
bottom up.  Particular needs were the architecture for the models and data structures—how they are 
created, how they interact, and how they are solved.  As this architecture was created, a development 
effort was made on how to model the horizontal three-phase separator, and later the test loop and 
separator as a whole. 

What follows is a documentation of the MATLAB architecture, which is more or less the same as is 
employed in the full-on NPSS version.  A simple tutorial that gives examples of the key features can be 
found in Appendix 0.  All required MATLAB files are embedded therein.  The three phase separator & 
test loop files are found embedded in Section 5, also as a complete package, along with description. 

Often it is the case that there are many ways to achieve the same purpose, including how best to divide 
the simulation problem into pieces, how to define unit models, when to create sub-models, how to 
solve systems, and so forth.  The nomenclature is fairly well developed at this point, as this code has 
been used not only for RPSEA work but for some key GE internal programs.  It is not always easy, 
particularly in the scripts, so tell what a set “tool” is and what custom code is.  This is to be taken as a 
show of flexibility and capability to evolve.  Code segments and model combinations that are useful can 
be pulled into new unit models and tools.  It is anticipated as user groups develop and libraries are built, 
useful tools, conventions, and routines will emerge.   

2.2 Simulator Infrastructure 
There are four things needed to run a MATLAB simulation:  1) The simulator code, 2) unit models, 3) a 
control file, and 4) a run script.  Each of these is described below. 

2.2.1 Simulator Code 
The first is the simulator code itself which is organized in several m-files.  MATLAB needs to have a path 
set to these files for execution.  They include a collection of files named Stat_*.m which are useful for 
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batch runs and statistical analyses and are discussed in Section 4.  The remaining files are named 
Tool_*.m of which only the following are essential: 

• Tool_BuildModel.m calls Tool_Read_Ctrl.m to load the Control File which contains the assembly 
of the model (more on this later) and then initializes the MATLAB data structures. 

• Tool_RunCase.m executes the top level Unit Models as using default settings, what is specified 
in the Control File, what is specified in the run script, or what is directed in a unit model, 
whichever occurs latest.  (As mentioned earlier, there are many ways to do the same thing.  This 
is a feature!)  It can be directed to iterate over the Unit Models or a subset thereof until 
convergence is obtained, or execute them once.  It also sets up next-step working space in the 
data structures for transient and batch simulations. 

The other tools are MATLAB code snippets that perform useful functions: 

• Tool_RunCases.m takes a list of cases typically generated using the statistics package 
preprocessor and feeds them to Tool_RunCase.m for execution. 

• Tool_PlotRun2D.m makes it easy to plot simulation results. 

• Tool_PlotSlice.m also makes plots and is of particular use with batch runs / statistical package 
post-processing. 

2.2.2 Unit Models 
Unit models are implemented as MATLAB functions.  They exist to retrieve relevant information from 
the data structures, perform some computation, lookup, or call to an external program, etc., and then 
return their output in the correct locations in the data structures.  With the use of standardized 
interfaces, the possibility of replacing, updating, enhancing models is easy.  They can also be deployed 
hierarchically, i.e., a unit model can be used as a sub-model within another unit model.  Unit models can 
be instanced.  Tag based nomenclature is used to locate data for storage or retrieval.  This can make the 
calls long, but easily decipherable. 

2.2.3 Control File 
The control file contains the information for assembling the Unit Models into simulations.  It contains a 
list of top level Unit Models and how they are connected.  It contains a list of variables and their initial 
values as needed in the different structures.  Finally, it can contain the methodology of executing the 
models.   

2.2.4 Run Script 
The run script is a MATLAB m-file whose execution launches the building and execution of the 
simulation.  This can be augmented to include any other operations deemed useful, such as code to 
implement various simulation cases or post-processing.  If the MATLAB tools are used to set up batches 
and perform complex post-processing analyses, the script can be quite complex but very useful.  Script 
segments can be relegated to m-files as is useful for organizational or sharing purposes. 
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2.3 RPSEA Simulator Architecture 
The fundamental building blocks of the RPSEA Simulator architecture are the Data Structure and Unit 
Models.  

2.3.1 Data Structure 
At present the Data Structure contains four sub-structures organized by what they store: 

The GB sub-structure is for constants.  They can be modified, but only the last value is stored. 

The Global sub-structure is for storing things that may vary with time. 

 The Stream sub-structure is for storing things that may vary with time and location, i.e., at the 
connections between top level unit models. 

The Fluid sub-structure stores things that may vary with time, location, and by fluid. 

These structures are convenient because they facilitate location of data using tags and minimize 
memory use while keeping the workplace clean and organized.  Experience exists with adding and 
tracking data outside these structures. For example, custom structures are used in the three phase 
horizontal test separator simulations to track the motions of droplets and bubbles (and perhaps in the 
future, sand). 

2.3.2 Unit Models 
Unit models start with a standard MATLAB function declaration.  It is highly recommended that this is 
followed with documentation which states the model’s function, methodology, and variables that need 
to have been defined in the Control File.  It should also document what unit models are employed as 
sub-models and define what the various outputs are.  It is recommended that the documentation is 
followed with some boilerplate code that first copies the stream and fluid data entering the unit model 
to their corresponding locations on the unit model output.  Otherwise stream components on which the 
unit model does not operate will be lost, having not been propagated downstream.  Finally, the 
calculation block follows.  This may be equations, look up tables, calls to external packages, etc.  The key 
results are exported to their appropriate locations in the Data Structures.  Top level unit models as 
defined in the Control File are executed as directed by the modeler via Tool_RunCase.m.  Sub-Models 
are executed when called for by their host. 

2.4 Comments 
The architecture is based on simple and minimalistic principles.  Were it not so, the simulation 
developer would face unwanted constraints in solving problems.  The typical approach to building a 
simulation is to start simple and get a model working.  From this point complexity can be added, unit 
models can be organized and reorganized, and the simulation evolved into something comprehensive.  
The tutorial and test separation models are provided to give examples of this. 
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3 NPSS Simulator Version 

3.1 Objectives 
The simulator framework should have the ability to:  

Define the system as a network of component/elements that model the basic physics of the subsea 
processing system. 
Exchange information between different components/elements that define the overall system. 
Transfer Fluid streams from one component to another through reconfigurable ports. 
Model a generic stream that can comprise of Liquid, Gases and Solids that can exist in Discrete 
(bubbles, particles) and continuous mixed form. 
Capture the thermodynamics of the mixtures by having the ability to hook up commercial 
thermodynamic libraries such as Multiflash, HYSYS etc. 
Permit a multiple user concurrent model development through version control and managing 
different versions of the code for easy distribution and release. 
Permit model exchange across companies in joint development projects while still protecting the 
proprietary equations and data that are part of the models by encoding. 
Run in a batch mode so that statistical analysis can be done in an automated multi-processor 
environment. 

3.1.1 Criterion for selecting the Platform 
Based on the above description, the list below summarizes the criterion to select the platform: 

Model Build Environment (Ease, Customize, Flexibility and Capability) 
Component Model Library and Ease of Creating new Components 
Template Fluid Stream Models 
Thermodynamics & Flashing of Fluid Streams 
Ability to Call Other Commercial Packages (C++ / Java) 
Ability to be Integrated into Commercial Packages 
Version Control, History and Release Process 
Model Integrity and Exchange within Same Organization & Across Companies 
Costs for maintaining & deploying Framework 

3.2 What is NPSS (Numerical Propulsion System Simulation)? 
Within NASA’s High Performance Computing and Communication (HPCC) program, the NASA Glenn 
Research Center (GRC) developed a large scale, detailed simulation environment for the analysis and 
design of aircraft engines called the Numerical Propulsion System Simulation (NPSS). NPSS was created 
as an object-oriented engineering environment for use in the analysis and design of complex systems 
and includes an open architecture with a flexible user interface.  NPSS is a state of the art simulation 
tool that is becoming the Gold Standard for system modeling in the aerospace industry. 

At its foundation, NPSS is a component-based object-oriented engine cycle simulator designed to 
perform cycle design, steady state and transient off-design performance prediction, test data matching, 
and many other traditional tasks of engine cycle simulation codes.  Like traditional codes, an NPSS 
engine model is assembled from a collection of interconnected components, and controlled through the 
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implementation of an appropriate solution algorithm.  Historically, limited computer resources 
restricted component representations used in these simulations to be simple characterizations of 
empirical test results, or the results of more sophisticated component models run separately.  NPSS, 
however, is capable of calling upon more sophisticated component models directly. Using the computer 
industry’s Common Object Request Broker Architecture (CORBA) communication standard, NPSS can 
interact with external codes running on other computers distributed across a network.  A work in 
progress, the advanced system architecture designed into NPSS will allow the marriage of design tools at 
varying levels of dimensional fidelity across multiple technology disciplines.  Following are the basic out 
of the box capability of NPSS: 

• All model definition through input file(s) 
• NIST (National Institute of Standards and Technology) compliant thermodynamic gas-properties 

package 
• A sophisticated solver with auto-setup, constraints, and discontinuity handling 
• Steady state and transient system simulation 
• Flexible report generation 
• Built-in object-oriented programming language for user-definable components and functions 
• Support for distributed running of external code(s) via CORBA 
• Support for test data matching and analysis 
 

This advanced performance analysis environment with an extensible framework provides an 
unprecedented level of interoperability and allows NPSS models to be readily interfaced with many 
commercial off the shelf software and customer developed applications.  The ability to interface with 
multiple and diverse tools allows users to test the interactions between the system and specific 
subsystems and/or external system models.  The powerful architecture enables NPSS to be used 
throughout the life cycle of the product.  NPSS models are used in both preliminary and advanced 
design, development, test, manufacturing, operations, and more.  These features make NPSS an 
invaluable tool for anyone creating products involving complex systems.  

3.3 Simulation Structure 

3.3.1 Hierarchical Units with Embedded Physics 
A fundamental unit called Element is defined to perform the most basic operation.  The element has 
in/out ports that can accept streams, process them based on the physics defined inside the element.  

The abstract unit comprises of an Inlet / Exit Port Array, Pre Calculate (Flash), Calculate (Physics) & Post 
Calculate (Cleanup).  This unit is uniquely addressable in the overall system and its fields / properties can 
be extracted and used by any other portion of the system (Figure 6). 
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Figure 6: Standardized model and interfaces 

 

Depending on the physics, it is easy to capture the “is a” relationship between the elements and hence 
utilize the concept of inheritance.   For example Weir is an Element; Gravity Separator is an Element.  
The inherited elements define the classic functions using the virtual method so that the programming 
system can use the function from either the inherited unit or just the plain vanilla method call from the 
base element. 

 

Figure 7:  Some element types 

3.3.2 Stream Definition & Manipulation 
The stream is composed of discrete and continuous components.  Each component is identified by a 
name that is assigned a continuous and a discrete composition that is tracked through the entire 
system.  
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The overall flow of the stream is specified as a mass flow and molecular weight is utilized to determine 
the molar flow for internal processing as needed.  Some of the common utilities to manipulate the 
stream have been created as helper functions that can be reused are listed below:  Add Two Streams, 
Divide Stream in Proportion, Reallocate Discrete Distribution and create Rosin-Rammler Distribution. 

3.3.3 Assembly of Units into a System 

 

 

The system is made up of a set of Element objects that are connected by streams.  The System 
instantiates and maintains the objects within its context and manages the objects using a Data Manager.   
Given the complexity of such systems, the NPSS provides for a Solver Manager to specify the sequence 
of how the objects are going to be solved.  

 

Figure 8:  Assembly of units into system 
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3.3.4 Library Management 

 

Figure 9:  Library management 

In an interpreted programming context, the end user can create models locally in his sand box as text 
files.  The users can package the models as a binary DLL, so that proprietary information such as design 
formulae or data need not be revealed to the end user.   As with any version management system, the 
end user needs the capability to assemble the system from components that are in different versions.  
The context file help identify the valid set of components for that overall system revision. 

3.3.5 Wrapping of External Modules into NPSS Framework 
This section describes the numerical zooming between a NPSS engine simulation and higher fidelity 
representation of the engine components.  NPSS provides two software techniques to wrap higher 
fidelity code written in FORTRAN / C++ into a simulation component.  One is based on the Dynamically 
Loadable Module (DLM) and the other is via the Common Object Request Broker Architecture (CORBA).  
This is a feature that will be used to wrap calls to external thermodynamic libraries for performing the 
flashing the hydrocarbon streams to determine the liquid & gaseous composition. 

3.3.6 Integration of NPSS within other frameworks 
NPSS has the capability to package the System model as self-contained Customer Deck Modules.  These 
self-contained entities can be exported to customers for testing it on their simulation environment in an 
encrypted format so that the proprietary design rules need not be divulged to outside world.  This 
permits collaborative research between competitors on joint projects.  

This capability can also be used to package the NPSS model so that it can be integrated with 
HYSYS/OLGA environments (Figure 10).  The simulation environment has an Application Programming 
Interface by which the NPSS models can be invoked from an external package.  The customer deck may 
be delivered with no encrypted files, or it may be delivered with one or more encrypted model files to 
be read in.  It is also possible to read in non-encrypted files containing NPSS syntax.  In addition, the 
customer deck can be run as a stand-alone program or called as a subroutine from another code. 
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Figure 10:  RPSEA Interfacing with Process Simulator 

3.4 Flashing of Fluid Properties 

 

 

Flashing is one of the most common thermodynamic operations performed on the hydro-carbon fluid 
streams.  The fundamental physics of flashing is captured in the Infochem’s Multiflash modules – we 
utilize the power of NPSS to incorporate the external thermodynamic modules to determine the stream 
state.  Every port has a one to one linkage to a Flow Station which retains all the state information for a 
stream.  Each FlowStation will internally relay the call to the Multiflash Thermodynamic module to 
calculate the properties which will then be saved as local variables in a FlowStation for that stream. 

Figure 11:  High level NPSS structure:  Thermodynamics and Element/Port 
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The Element can directly access the information in the FlowStation through the ports and perform the 
calculations.  For example, one can easily simulate InEnthalpic Mixing of two streams by just summing 
the enthalpies of the inlet streams and adding them inside the calculate module of the element.  Finally, 
the cumulative property is relayed to the outlet port.  It should be noted that all the calculations are 
done in the memory and hence very fast. 

3.5 Interface with HYSYS Process Simulator 
 

NPSS modules can be accessed in memory through a DLL 
connection.  This means that HYSYS or OLGA can directly 
address the NPSS objects and perform the calculations.  
HYSYS permits the creation of User Extension where we 
can embed the instantiation of the NPSS model, feeding it 

the desired streams, performing the calculation and 
extracting the values back into the HYSYS world. 

 

 

The NPSS object is converted into a standalone customer-deck model which can be embedded inside 
another system.  Since the NPSS is based on a C++ framework, the target platforms can utilize a dynamic 
link library (DLL) linkage to access / call NPSS functionality.   This is described by a high level schematic 
shown below 

Figure 12: NPSS--HYSYS link 

Figure 13:  HYSYS extension primary objects (C++) 
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3.6 Summary 
In summary, the NPSS simulator provides for the following advantages:  

Increase modeling flexibility 
Improve productivity and accuracy earlier in the design process 
Reduce dependency on resident code experts 
Facilitate large scale and multi-platform system simulations 
Significantly reduce development time 
Decrease the risk of failure during development 
Reduce waste of materials and resources 
Support Plug-N-Play NPSS Internal Codes 
Eliminate inefficient date exchange by minimizing manual data transfers 
Reduce the cost of support, development, and training 

4 Statistical Package 
Per the requirements of the RPSEA project, a statistical package has been developed to determine 
operational envelopes and probabilities of system success.  This package consists of methods, tools, and 
example scripts for extracting the wanted information from the models.  Due to the architecture of the 
RPSEA Simulator, particularly how all variables are treated similarly, the statistical package has two 
additional utilities of great importance:  First, there is optimization of design / operation.  Unit models 
may include physical, control, or other parameters that can be varied within batches of runs.  Given one 
or more performance metrics, these parameters can be chosen such that performance is maximized.  
Example:  choosing a separator vessel’s dimensions such that weight is minimized without an excessive 
performance hit.   Second, there is the tuning of models, in which existing models are infused with 

Figure 14:  HYSYS / NPSS interactions 
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coefficients, whose values are found such that modeling errors are minimized.  This key process 
improves model accuracy and generality, and permits mining of data to produce new / improved models 
which can then be adopted into the unit model library. 

Figure 15 shows how the statistical tools interact with the simulator environment.  A preprocessor can 
set up a batch of cases that are executed in the Simulator Environment, and/or the variable inputs can 
be implemented at the process simulator level.  As the statistical package is presently implemented in 
MATLAB, the former case is the norm.  For each simulation in the batch, the statistical tool receives 
results for post-processing.  More accurately, all batch run results exist in the data structures, and it is 
known how to parse the data associated with each batch case.  The statistical package tools and a script 
are then used to analyze the results, examine cause-and-effect and sensitivities, calculate operation 
envelopes and probabilistic metrics, optimize designs, and tune models.  

 

Figure 15:  Interface of Characterization tools with Simulator 

4.1 Pre-Processor  
The sole purpose of the pre-processor is to create a list of cases to be run.  This list is created as a two-
dimensional array in Stat.Cases in which each column represents a single case to be run, and each row 
represents a different variable.  Any GB, Global, Stream, or Fluid variable can be varied.  A companion 
structure Stat.ID indicates which variable is associated with each row of Stat.Cases, as well as the 
parameters associated with each variable, and an identifying flag.  Given these two arrays, 
Tool_RunCases can then be invoked, which will column by column (case by case) load the variables 
associated with that case (using Stat.ID as the map), overwriting prior definitions in the control file, and 
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executing the simulation using Tool_RunCase.  Results from subsequent cases are appended to the 
variable structures for subsequent parsing and analysis, using tools discussed below. 

Stat_SetCases was developed to create the batch of cases in Stat.Cases and associated annotation in 
Stat.ID.  “help Stat.SetCases” will bring up the syntax as needed.  In short, the user creates Stat.ID which 
includes on each row a variable that is to be varied, the method by which it is varied, and a flag to 
identify what type of variable it is.   

The first method of variation is probabilistic.  A property such as a stream or fluid compositional 
property may be randomly chosen using a cumulative distribution function (CDF).  If there are more than 
one probabilistically selected variable, a correlation matrix is required which describes how the variables 
are related to each other.  Using this and a copula, a user selected number of cases are created 
according to the statistical distribution.  The various combinations represent statistically likely 
combinations.  A typical CDF and PDF for 5 different types of distributions are shown in Figure 16.  In 
Stat.ID, these variables are flagged with an ‘R’ 

 

Figure 16:  Statistical Distributions 
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Next, variables can be varied across a user defined range, i.e., from a minimum value to maximum value 
in steps of some amount.  This is useful for everything from screening designs to finding operational 
envelopes to optimizing and so forth.  The user can put in a list of custom values if needed.  Two flags 
are used, though others can be defined:  ‘G’ is for ‘gridded’ variables that are expected to fluctuate over 
the course of operations and thus may have statistical probabilities associated with each value during 
post-processing, and ‘P’ for parameters such as those for different physical system designs, controls, 
model tuning factors, etc. 

By way of example, Figure 17 shows a three dimensional set of cases below.   Each point represents an 
individual test case.  Note, as shown in the figure, the same random values for the random variable(s) 
are used for each combination of the other grid/parameter variables.  This makes it possible to look at 
slices of data, i.e., in which the analysis covers a subset of cases associated with one value for the 
random variable.  If different random values were chosen for each combination of the other variables, 
looking at and analyzing slices would not be possible. 

Batches may have any number of variables.   

 

Figure 17:  Inputs combinations.  Each dot represents a simulation case. 

The process of defining batches of simulations can be easily customized as needed via script.  For 
example, for the RPSEA horizontal separator work, the first variables are to match the actual 
experimental inputs from the tests.  First, the experimental data (the test conditions—flow rate, fluid 
properties, etc.) are loaded into Stat.Cases, and Stat.ID is annotated to show what variable is associated 
with each row. After defining random, grid, and parameter variables and specifying their distributions, 
Stat_SetCases is called, which permutes the experimental variable values across all the chosen model 
parameters to be varied—in this case typically model tuning parameters.  The flag for the experimental 
values from the data files is flagged with an ‘X’.  These and other flags are useful in post-processing for 
automating the selection of rows of various types, as will be shown later.  The flags are more for 
scripting convenience as the row labels are descriptive.  
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4.2 Batch Execution 
As mentioned above, given the list of cases (Stat.Cases) and the associated variables (Stat.ID), 
Tool_RunCases will execute all the simulations.  The results of each simulation are appended to the 
various data structures.  For steady state runs, that means the nth data column (same index as “time”) 
corresponds to the nth simulation case.  For transient runs, there will be sequential blocks of data.  The 
beginning of each new block is easily discerned as the time variable is reset to zero.  In any case, the 
data structure index associated with time in a single run is now associated with time and simulation 
case. 

4.3 Post-processor 
All simulation data from the batch is maintained in the usual data structures.  Next, the typical step is to 
create a script to perform the wanted post-processing.  The first though optional step is to complete the 
statistical description of the simulation inputs, i.e., for the ‘Gridded variables flagged with the ‘G.’  The 
randomly distributed ‘R’ variables already have a statistical description, and the ‘P’ parameter variables 
represent different instances—parallel realities, if you will.  The execution of this tool is required for 
statistical analyses.  The statistical description for the ‘G’ variables is given in much the same way as 
used in the pre-processor (see help Stat_PostStatistics) and requires a correlation matrix now sized to 
include the ’R’ and ‘G’ variables.  Upon execution, this tool appends to Stat.Data (and annotates Stats.ID) 
the probability of each case (‘A’) and the ‘volume’ represented by that case (‘D’).  To the extent that the 
variable ranges span the probable extent, integration of probabilities * volumes (i.e., the ‘volume’ under 
the probability distribution function ‘surface’) will numerically approximate 1.  These probability and 
associated ‘volumes’ associated with each of the ‘R’ and ‘G’ variables are necessary for calculating 
probabilities / time percentages of success, net present values (NPV), and the like, which are extremely 
useful for characterizing system performance, optimizing designs, and so forth.  For example, if the oil 
flow from operations at each case is known from modeling, and this value is multiplied by that case’s 
probability and ‘volume’, and this is summed over all cases (associated with one design parameter set, 
of course), a measure of present value results.  

Next, it is necessary to extract the simulation results to be analyzed.  Since there is one set of results per 
case, and Stat.Cases already has some of the requisite data—the inputs—it only makes sense to pull 
metrics from the results and append them to Stat.Cases, noting what each new row is in Stat.ID.  For 
example, in a steady state batch, an oil-in-water fraction can be calculated for a water outlet for each 
case.  This is done using the same tag based nomenclature as is used for accessing the data structures in 
the unit models.  If each case is a transient run, there is some additional work to define metrics.  Is the 
metric based on the last time step of the simulation?  After some key event?  An average over some 
time?  All the data is available, but the user has to figure out the code to get what is wanted. 

With Stat.Cases & Stat.ID containing the simulation inputs and results, one can make plots to explore 
the results.  Tool_PlotSlice allows the user to select one, two, or three of the variables by row number 
and generate a histogram, 2-D scatter plot, or 3-D scatter and surf plots, respectively.  Data can be 
filtered prior to plotting.  The necessary syntax will show by typing “help Tool_PlotSlice.” Figure 18 
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shows a 3-D scatter and surface plot for some simulation results.  Note that while the surface plot is 
certainly more visually appealing and easier to visualize, the scatter plot contains more information.  In 
general there are multiple Z values for each (X,Y) pair because the solutions are generally hyper-
dimensional.  The surface plot simply uses the average Z, while the scatter plot shows all values.  If the 
variation of Z for a given (X,Y) is “small”, one may assume that X and/or Y are the key variables.  
Otherwise one needs to dig deeper to determine what other factors are driving the response. 

 

 

Figure 18: (left) Scatter plot and (right) surface plot 

Stat_Pareto is useful for determining the relationships between X’s and Y’s.  As with Tool_Plotslice, the 
rows associated with the various outputs (Y’s) and inputs (X’s) are selected, and with the execution of 
this tool a standard Pareto chart is made for each Y as a function of all X’s.  Parato plots are made by 
performing a 1st order linear regression and then plotting the regression coefficients associated with 
each X.   A Pareto is not infallible.  A Y may for example have a strong 2nd order dependence on an X but 
no 1st order dependence.  In this case the Pareto method will not flag that variable as important.   This 
can be detected by plotting data or Residuals. 

Figure 19 show a matrix plot using gplotmatrix (in the MATLAB Statistics Toolbox) which shows pair-wise 
correlations and a Pareto chart. 
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Figure 19:  Graphical correlation tools 

The next topic is the determination of operational envelopes.  Stat_GoNoGoEnvelop looks for lines in 
Stat.ID in which the flag (in the 8th column) is a ‘B’  The argument in the 5th column is a threshold, and 
the 6th is ‘1’ if ‘higher than the threshold’ is a ‘Go’ or ‘-1’ if ‘lower than the threshold’ is a ‘Go’.  Execution 
of Stat_GoNoGoEnvelope appends to Stat.Data (and annotates Stat.ID) with a row (Flag: ‘C’), 
corresponding to each line of interest that contains 1’s and 0’s for each case designating a ‘Go’ 
(success!) or ‘No-Go’ (failure!) for each case.  Finally, it appends a row (Flag: ‘E’) that contains 1’s, where 
all the Booleans are 1, otherwise 0.   Figure 20 shows the process.  For some metric (left), a threshold is 
defined (red line) and a map created showing success and failure.  Appreciate these simple plots, 
because in general the analyses will be hyper-dimensional. 

 

Figure 20: Generation of Go-No Go Map 

If post-processing statistics has been applied (Stat_PostStatistics—described above) and there are 
design parameters being varied (from pre-processor, flagged with a ‘P’), Stat_GoNoGoEnvelope will also 
consider each set of parameter cases one at a time, and in short multiply the Go No-Go Boolean surface 
by the probability surface times case volume and integrate to get the probability of each design to meet 
the various metrics.  Voila!  One can use this along with other metrics (cost of each design, weight of 
each design, etc) to pick the optimal design.  Whereas Stat.Cases has one column for each case that is 
run, these results will have one column for each permutation of design parameters ‘P’.  Hence new 
structures are created:  Stats.ParaSet and Stat.ParaID with this data.  They are in every way analogous to 
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Stat.Cases and Stat.ID respectively and can be examined using Tool_PlotSlice and Stat_Pareto in the 
expected manner. 
 
Figure 21 shows an example in which the Go / No-Go map of Figure 20 is multiplied by the probabilities 
associated with each of the cases.  Integration under this surface, done by multiplying the Go / No-Go 
Boolean by the probability and volume associated for each state associated with one parameter set and 
summed, gives the probability of success. 
 

 

Figure 21: Probability of success 

Figure 22 shows a plot in which the above has been done for each design parameter permutation by 
Stat_GoNoGoEnvelope, and the probability of success is plotted verses design parameters using 
Tool_PlotSlice.  The highest point is the optimal design with respect to the defined metric. 
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Figure 22:  Cost as function of design parameters 

 

Stat_GoNoGoMaps is a tool for plotting Go / No-Go for a pair of inputs.  As shown in Figure 23, there 
can be a multitude of criteria and their intersection. 

 

Figure 23: System Envelopes 

The key to post-processing is to view Stat.Cases / Stat.ID, Stat.ParaSet / Stat.ParaID as stacks on which 
X’s, Y’s, statistical quantities, performance metrics, and the like reside.  The tools above simply create 
some of these quantities, integrate them by design combination or otherwise operate on them to allow 
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visualization, reduction, optimization, or the like.  While such analyses may seem complex when taken 
as a whole, the steps when broken down are fairly straight forward. 

As mentioned before, there is no real line between tools and scripts.  Scripts morph into tools inasmuch 
as they obtain general usefulness.  In between these limits are templates. 

4.4 Model Tuning 
Two modeling limits exist (Figure 24).  Empirical models assume no topology and rely only on 
observation.  Since what is observed is assumed to be real, these models are presumed to be accurate 
but are only applicable where data exists.  On the other hand, analytical models intend to capture some 
underlying structure and therefore are continuous in some domain, but may be accurate nowhere.  In 
fact there are no models that are purely empirical—assumptions are made on how to interpolate, 
extrapolate, or manage error for example, and most all analytical models have some experimentally 
derived coefficients.  For example, one assumes linearity and obtains the slope experimentally (Fick’s 
law, Hooke’s, law, Fourier’s law, Ohm’s law, etc.).  In practice good models live between these extremes, 
so this fact is to be embraced and exploited. 

 

Figure 24:  Limiting model types 

The method of tuning is that one starts with some topology, some physics, or some analytical model.  
This provides continuity and generality.  Next, some degrees of freedom are added through the insertion 
of tuning parameters which figuratively allow translation, stretching, rotation, etc. of the topology.  
Given experimental data one can choose the values for the tuning parameters such that error between 
model and experiment is minimized.  Accuracy is improved; continuity and generality is maintained.  
This process is illustrated in Figure 25. 
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Figure 25:  Tuning process 

Recognizing that this process would be essential for the validation of the RPSEA Simulator and 
invaluable for creating models in general, an effort was commenced to develop these tools until it was 
realized that they already exist as part of the statistical package.  Tuning parameters are isomorphic with 
design parameters, and thus the same optimization methods apply. 

Some notes:  Simpler models are easier to tune, being less topologically rigid and complex.  It is vastly 
preferred to tune aspects that are not well understood as opposed to things relatively known such as 
dimensions, natural constants, etc).   

Tuning is a process of generalizing.  One could find a set of tuning parameters using oil A, then repeat 
the process for oil B.  Tuning parameters that remain unchanged between the two oils would seem to be 
independent of that which makes the oils different.  On the other hand, if the two oils have different 
viscosities for example, one could take the varying tuning parameters to be functions of viscosity.  
Implementing this function pops the model up a level in generality that now includes arbitrary viscosity 
(over some range) which can then be further tested, developed, and validated.  Modeling, data, and 
tuning produces new models of increasing generality and accuracy.  The goal of this Simulator and 
package is to soak up all available knowledge and understanding and grow in capability. 
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5 Experimental Validation 

5.1 Test Objectives 
As stated in Section 1, the objective is to develop a lab-scale test facility and testing protocols for the 
validation of both the analytical models and the simulator performance;   to develop a methodology and 
associated procedures for using the Simulator to determine the operational envelope for various 
process designs; and Using the lab-scale test facility and protocol, validate the simulator performance by 
executing a test plan to evaluate over a wide range of conditions.   This section describes the test facility, 
the experimental test separator and system, the Simulator models of the same, and the procedures 
used for model development and overall simulation validation. 

5.2 Flow Loop Design 
A schematic of the flow loop is shown in Figure 26. It consists of a three-phase (gas / oil / fresh (salt) 
water) facility featuring a large, atmospheric pressure, polishing tank which is the main reservoir of test 
fluids and separates them for controlled circulation through the test loop.  Circulation is controlled by 
separate pumps for the oil and fresh (salt) water, and a compressor for the gas.  A globe valve is 
installed downstream of the mixing header to create shear in the flow and further mix it avoiding 
stratification. At the inlet of the test section another ball valve is installed, which this is partially opened 
to promote mixing and droplet / bubble creation. The compressed gas is taken from the top of the 
atmospheric pressure tank. The oil and water in the test separator are regulated using the level 
indicators and level control valves. After the test separator, the fluids are recirculated back to the 
polishing tank in separate gas / oil / fresh (salt) water lines to force further separation in the polishing 
tank. 

5.2.1 Specifications 
The test separator and the flow loop have been design and built for a pressure rating of 16 bar at 20° C.  
Maximum oil and water flow rates are 70 m3/hour each, and maximum gas rate is 270 m3/hour.  The 
range of operating temperatures is 4 to 40° C. 

5.2.2  Control System and Instrumentation 
The test rig’s automation system consists of the LabView control system and the instrumentation system 
as shown in Figure 27. 

Control System Features: 

• LabView provides an extremely flexible solution for integration of new test equipment. 
• Online trending of user-selected data. 
• Logging of all test data. 
• Alarm and shutdown functionality. 
• Ethernet-based IO for easy installation. 
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Figure 26:  Experimental flow loop schematic 
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Fig 27: Control System programmed in LabView 

Instrumentation includes the following.  There is a flow meter and an electrically actuated flow control 
valve at the outlet of each of the pumps and compressor to enable for control of the circulation of the 
fluids. Pressure and temperature instruments are mounted at different points on the four inch pipe. 
Level indicators and electrically actuated level control valves are installed on the test separator to 
regulate the fluid levels. A pressure control valve is also installed at the test separator in order to control 
the pressure to the desired operating value. As required, sight glasses such as that shown in Figure 28 
are installed in the test rig at inlet and outlet of the test separator to visualize the fluid from three 
directions (top, and two sides). Sampling points are also provided at both atmospheric pressure tank 
and test separator.  
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Fig 28: Flow loop sight glasses 

Each of the motors for the water and oil pump is controlled based on the Direct Torque Control  
method. Two-phase current and direct current link voltage are measured and used for the control. The 
third phase current is measured for earth fault control. 

The level instrumentations for the oil and water phases inside the test separator are floater made by 
Orion Instruments. The range is 0 – 50 cm on the oil side and 0 – 40 cm on the water side. The floating 
chamber is mounted to the side of separator vessel, and as the liquid rises and falls, a float with a built 
in magnetic system inside the external chamber rises and falls with the liquid level. The chamber is 
completely sealed so that the only moving part of the apparatus is the float. A sketch of the instrument 
is shown in Figure 29. 

On the exterior side of the chamber is the magnetic indicator display, a column of magnetic rollers 
which are white on one side and red on the other side. As the float moves up and down, the 
concentrated magnetic field of the float magnet pulls the rollers through a rotation of 180 degrees, thus 
changing their colors. As the float rises, the color is changed from white to red, and as the float falls, the 
color is changed back to white again. Thus, the level of liquid in the tank is constantly represented by the 
red column. This is also connected to LabView for easy control. 

 
 
 

 
Fig. 29. Schematic of Level Instrument 
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The pressure meters are shown in Figure 30 and made by GE Druck, with a range of 20 mbar – 1400 bar. 
At the heart of the instrument is micro-machined silicon sensing element. Micro machining defines the 
thickness and the area of the silicon which forms the pressure sensitive diaphragm. A fully active four-
arm strain gauge bridge is diffused into the appropriate region. The basic sensor is housed within the 
high integrity glass to metal seal, providing both electrical and physical isolation from the pressure 
media. The electronic assembly utilizes microprocessor technology to create a compact circuit with the 
minimum of components while producing extremely stable signal unaffected by the shift in ambient 
temperature.  
 
 

 
Fig. 30. Pressure sensors 

The flow instrumentations for the liquids are a series of Coriolis flow meters made by Krohne Coriolis 
with a capacity of 100m3/hr, and shown in Figure 31. The measuring is based on the Coriolis principle. A 
Coriolis single tube mass flowmeter consists of a single measuring tube 1, a drive coil 2, and two sensors 
3 and 4 that are positioned either side of the drive coil. When the meter is energised, the drive coil 
vibrates the measuring tube causing it to oscillate and produce a sine wave 3; the sine wave is 
monitored by the two sensors (OPTIMASS 1000). 
 
 
 
 
 
 
 
 
 
 

(a) 
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  (b)        (c) 
Fig. 31. Coriolis flow meter (a) at rest, (b) energized, and (c) energized with process flow. 

When a fluid or gas passes through the tube, the Coriolis Effect causes a phase shift in the sine wave 
that is detected by the two sensors. This phase shift is directly proportional to the mass flow. Density 
measurement is made by evaluation of the frequency of vibration and temperature measurement is 
made using a Pt500 sensor. 
 
For air flow measurement, Krohne Vortex Flowmeter was used, with a capacity of 20m3/hr. The 
functional principle is based on ISP (Intelligent Signal Processing).  
 

5.3 Test Separator 
The RPSEA test separator is 6m long and 730 mm ID, with flanged flat end-plates. It has one single inlet 
and three outlets, one for oil, one for water, and the last outlet for gas. An inlet vane is used as the inlet 
device and a weir plate mounted at 0.75 m upstream of the seam at the outlet end of the tank to cover 
70 percent of the area.  Figure 32 shows a simple sketch of the test separator and an actual picture of 
the separator at the facility. 

 

 

 

Weir      Gas exit 

                             Oil exit    Water exit 
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Figure 32: RPSEA test separator 

5.4 Test Program 
The fluids used for the test were the model fluid Exxsol D80, fresh water, and salt water. The properties 
of the model oil are: 

Manufacturer:    ExxonMobil Chemical 
Exxsol D80 

Major components:   Normal Paraffins, Isoparaffins and Cycloparaffins  
Specific Gravity:   0.79 
Viscosity:    1.71 cP @ 25 C 
Surface tension @ 25 degC 26.3 mN/m 
Behavior over time: When Exxsol D80 and water and in contact, the oil tends to deteriorate 

over time with growth of algae in the oil, which supposedly changes the 
chemical properties of the mixture.  

 
Typical produced oils in the GOM include the lighter Miocene, with a specific gravity ranging from 0.6 to 
0.85 and a viscosity of 0.5 to 2 cP, and the Paleogene with a specific gravity ranging from 0.8 to 0.9 and a 
viscosity of 1 to 50 cP 
 
The experiment test matrix was designed to vary the oil flow rate, water flow rate, and oil and water 
levels in the test separator. Each of the four variables is set to three different levels, giving a total of 81 
test runs for a full factorial design. Some test runs were not successfully carried out due to tight level 
sitting that resulted in a very stable emulsion formation.  

A first batch was run with oil and fresh water, and a second, reduced, batch was run with salt water. For 
this, a concentration of 35 g/l of salt in water was used. The grams of salt required for the experiment 
was calculated based on the volume of fresh water in the polishing tank. A separate mixing tank was 
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provided for mixing the salt before being pumped back to the polishing tank. After the salt had been 
mixed, the water pump was used to circulate the salt water for a homogeneous mixture of salt. A 
conductivity meter was used for verification of the salinity of the water.  On confirmation of the salinity 
required, the salt water is applied for the experiment. Variables and levels used for the design of the test 
matrix: 

Oil test separator (cm):   40, 44, 50 
Water test separator (cm): 10, 17, 25 
Oil flow rate (m3/hr):  10, 15, 20 
Water flow rate (m3/hr): 10, 15, 20 

The entire test matrix is attached as an annex to this document.  

The following procedure was followed when running different points of the test matrix: 

 

 

 

 

 

 

 

 

 

 

 

 

 Test Procedure 

1 Input the conditions to the software controlling the loop as indicated in the matrix for the test. 

2 With variables plotted in the software, allow the loop to attain steady state condition. 

3 Once steady state is attained, flush oil sampling point from the test separator to remove 
entrained fluid.  

 Take oil sample from the test separator from oil sampling point. 
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5 Repeat #3 for water sampling point for RPSEA separator. 

6 Take water sample from the test separator water sampling point. 

7 Visually check oil outlet sight glass, if possible take pictures. 

8 Visually check water outlet sight glass, if possible take pictures. 

9 Visually check gas outlet sight glass. Comment on gas carry over 

10 Allow time for samples to separate, so that readings can be taken. 

11 Record your reading. 

12 Dispose of sample fluid after the reading has been recorded 

13 Thoroughly clean vases. 

14 Repeat for next test matrix point. 

 

For every test case, oil and water samples were collected in order to check for the separation efficiency. 
The sampling procedure was: 

Sampling Procedure 

1 Allow system to attain steady state.  

2 Flush the Polishing separator sampling points for both oil and water 
outlets. 

 

3 Take sample from the Polishing separator outlets, to confirm that there is 
no emulsion in the system. 

 

4 Flush RPSEA separator sampling points.  

5 Take samples from both oil and water outlet of RPSEA separator using 
calibrated bottles. 

 

6 Allow samples to stabilize for reading.  

7 Go to 1 for next test run  

5.5 Test Results 
Assuming the separation efficiency is affected only by the gravity force, the retention time for test run 
depends on the pump flow rate and phase level in the RPSEA separator. These physical variables will 
combine with the different physics of the separation to give an outcome for the test. Test results were 
only quantified in terms of water carry over in oil line and oil carry over in water line. Figure 33 shows 
the plot of the test results with phase carryover vs. retention time. 



 

Subsea Processing Simulator – 07121-1901 Final Report  44 

 

 

Figure 33: showing plot of carryover vs. Retention time for different level settings in the test separator 

Since retention time does not collapse the data presented in Figure 33, we can conclude that physical 
processes other than gravity separation are taking place in these experiments. It is suggested to consider 
surface tension due to pressure changes or more complex physical models for the gravity separation 
(i.e., considering droplet packing, foam formation, film drainage, etc.). 

As will be shown in the following sections, some data points did not follow trends typical of the majority 
of the data. For these “bad data” cases, photos such as that in Figure 34 for Run 63 show the oil outlet 
for this case. There is a lot of foam in the oil, and it might be possible to say that there are two 
characteristic sizes (foam with very small air bubbles, and also very large air bubbles). Not being able to 
break the foam layer is a sign of a very short residence time. Formation of foam is ‘new physics’ that 
affected data behavior and matches; other cases generally did not foam.  

Pictures were not taken for the rest of the cases (e.g., Runs 3, 32, 40, 54, 65, 68), as it was impossible to 
see through the sight glass. This might be considered as a sign of “very bad” separation. While turbidity 
tests are run at platforms for a quick assessment of the water/oil separation quality, these can be 
misleading because turbidity depends not only on oil-in-water content, but also on the droplet size and 
the droplets’ combined light dispersion index.   
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Fig. 34 – Run 63. Oil outlet showing foam with different characteristic sizes. 

Figure 35 shows two different pictures from the oil outlet: Figure 35 (a) was taken from run 44 in which 
there was no water measured in the oil outlet. The oil is so clear that the three light sources are visible 
through the glass. There is a small amount of water droplets/foam trapped in the sight glass frame and 
the cleaning pipe, but those agglomerations were stable and didn’t detach for case a as long as the 
experiment was run. Figure 35 (b) was taken for case 49, which yielded 20 percent water-in-oil content. 
The mixed water is visible as whiter “lumps” in which no droplet size was recognizable.   

  

(a) (b) 

Figure 35. Oil outlet, with 0% WiO (a), and 20% WiO (b). 

(a) Note: Bubbles are stuck from previous experiments in dead zones; fluid otherwise is very clear 
(b) Note: white is ‘chunks’ of water; grey is unstable emulsion 

There were no pictures taken from the water outlet as the sight glass was either completely clear for the 
0 percent oil-in-water cases, or completely opaque for the rest of the cases. No droplet size was 
recognizable from those runs (either too small for the “naked” eye, or too big forming lumps).  

5.6 Simulation Setup 
As described in Section 5.3, the basic structure of the three phase RPSEA separator is shown as Figure 
36.  Gas, oil, and water are separated and flow out from the corresponding outlet.  Four top-level unit 
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models (functions) are called in the main program, including Upstream, Inlet, Gravity Separation, and 
Weir Outlets, shown as Figure 37.  The details of these four unit models are listed as follows: 

1. Upstream: No input/1 output.  The model aims to initialize upstream conditions and transfer the 
properties of multiphase stream to the next unit model. 

2. Inlet: 1 input/1 output.  It models the inlet device on through the baffle plate and calculates a 
single stream with three continuous layers, one for each fluid medium, plus droplets/bubbles 
list.   

3. Gravity Separation: 1 input/1 output.  The model aims to quantify gravity separator and Stokes 
Particle behavior. 

4. Weir Outlets: 1 input/3 output.  It models weir to downstream and calculates the percentage of 
three different fluid medium (gas/oil/water) that flow out of the three different outlets. 

 

 

 

Figure 36: Structure of the three phase RPSEA separator 
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Figure 37: Connectivity of unit models 

 

Generally, depending on whether a Steady-State run or a Transient run is needed, users have to go 
through the following steps to set up the simulation: 

1. Steady-State Run: 
a. Open control file 
b. Define $UnitList and the corresponding $Connectivity as  

 

$UnitList 
%  Format: 
%  Model Name # Instance # Number of Outlets # Long Name # 
Comment 
Upstream  # 1 # 1 # Upstream Conditions, steady state or calls 
modules for dynamic flow loop 
Inlet     # 1 # 1 # Inlet Device through Baffle 
GravityS  # 1 # 1 # Gravity Separator 1, Stokes Model 
WeirSS    # 1 # 3 # Weir Model, steady state  
$ 
  
$Connectivity 
%  Format: 
%  FROM  Model # Instance # Outlet # TO Model # Instance # 
Comments 
Upstream       # 1 # 1 # Inlet    # 1 #  
Inlet          # 1 # 1 # GravityS # 1 #  
GravityS       # 1 # 1 # WeirSS   # 1 # 
$ 

 
c. Set the value of GB.Data.SteadyState to be 1 for steady-state run 
d. Apply initial conditions in control file (single run) and input data file (batch run), 

including 
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  % Conditions 
  P_in  # value # Upstream Pressure [bara] 
  T_in  # value # Upstream Temperature [C]     
  Q_in  # value # Total Flow Rate [m^3/hr]     
  GVF_in    # value # Inlet GVF []                 
  WC_in # value # Inlet Water Cut []           
  O_rho # value # Oil Density [kg/m^3]         
  O_visc    # value # Oil Absolute Viscosity [cP]  
  G_visc  # value   # Gas Absolute Viscosity [cP]  
  Level_O # value # [(0-1)] Oil Level # Oil-Gas Interface 
Level (2D model ~ area ratio) 
  Level_W # value # [(0-1)] Water Level # Water-Oil Interface 
Level (2D model ~ area ratio) 
     
  % Geometry 
  GSH # value # Gravity Separator effective height [m]  
  GSL(Instance) # value # Gravity Separator effective length 
[m] for each instance  
  GSW(Instance) # value # Gravity Separator effective width 
[m] for each instance  
  Gravity_DZ(Instance) # value # Gravity Separator DZ for 
droplet tracking [mm] for each instance  

 

e. Define $StreamVarList, $FluidList and $FluidPropList as 

 

 

$StreamVarList 
%  Format: 
%  Name # e/i (extensive or intensive) # Long Name 
Press # i # [bara] Static Pressure  
Temp  # i # [C] Temperature       
$ 
 
$FluidList 
%Format: 
% Name # Phase (gas, liquid, solid) # Long Name 
Gas   # gas    # Air 
Oil   # liquid # Oil 
Water # liquid # Salt Water 
$ 
 
$FluidPropList 
%Format: 
% Name # Long Name 
Density   # [kg/m^3]  Density 
Viscosity # [cP]      Viscosity  
MFR   # [kg/s]    Mass Flow Rate CONTINUOUS Phase 
Max_Dia   # [miocron] Max Droplet Diameter  
$ 
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2. Transient Run: 
a. Open control file 
b. Define $UnitList and the corresponding $Connectivity same as Steady-state run 
c. Set the value of GB.Data.SteadyState to be 0 for transient run 
d. Apply initial conditions in control file (single run) and input data file (batch run), 

including 

% Run Setup 
SetPoint_OG  # value # [(0-1)] Set Point for Gas-Oil Interface  
SetPoint_WO  # value # [(0-1)] Set Point for Oil-Water Interface  
SetPoint_P   # value # [bara]  Set Point for pressure   
SetPoint_Q   # value # [gpm]   Set Point for Flow Rate 
SetPoint_WC  # value # [(0-1)] Set Point for water cut 
SetPoint_GVF # value # [(0-1)] Set Point for Gas Volume Fraction 
SetTime_OG   # value # [s] Time associated with SetPoint_OG 
SetTime_WO   # value # [s] Time associated with SetPoint_WO 
SetTime_P    # value # [s] Time associated with SetPoint_P 
SetTime_Q    # value # [s] Time associated with SetPoint_Q 
SetTime_WC   # value # [s] Time associated with SetPoint_WC 
SetTime_GVF  # value # [s] Time associated with SetPoint_GVF 
 
% Water Pump 
WP_PID_On  # Input # [] 1=PID controlled, 0 is manual setpoint 
WP_PID_MS  # Input # [] Manual Setpoint for water pump (0 to 100) 
WP_PID_P   # Input # [1/bar]     pump PID Controller P value 
WP_PID_I   # Input # [1/(bar*s)] pump PID Controller I value 
WP_PID_D   # Input # [1/(bar/s)] pump PID Controller D value 
WP_PID_Int # Input # [s]         pump PID Controller I: 
Integration time 
WP_Qmax    # Input # [gpm]       pump maximum flow rate 
WP_dQmax   # Input # [gpm/s]     pump maximum Q rate of change 
 
%Oil Pump 
OP_PID_On  # Input # [] 1=PID controlled, 0 is manual setpoint 
OP_PID_MS  # Input # [] Manual Setpoint for oil pump (0 to 100) 
OP_PID_P   # Input # [1/bar]     pump PID Controller P value 
OP_PID_I   # Input # [1/(bar*s)] pump PID Controller I value 
OP_PID_D   # Input # [1/(bar/s)] pump PID Controller D value 
OP_PID_Int # Input # [s]         pump PID Controller I: 
Integration time 
OP_Qmax    # Input # [gpm]       pump maximum flow rate 
OP_dQmax   # Input # [gpm/s]     pump maximum Q rate of change 
 
%Gas Compressor 
GC_PID_On  # Input # [] 1=PID controlled, 0 is manual setpoint 
GC_PID_MS  # Input # [] Manual Setpoint for oil compressor (0 to 
100) 
GC_PID_P   # Input # [1/bar]     compressor PID Controller P 
value 
GC_PID_I   # Input # [1/(bar*s)] compressor PID Controller I 
value 
GC_PID_D   # Input # [1/(bar/s)] compressor PID Controller D 
value 
GC_PID_Int # Input # [s]         compressor PID Controller I: 
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Integration time 
GC_Qmax    # Input # [gpm]       compressor maximum flow rate 
GC_dQmax   # Input # [gpm/s]     compressor maximum Q rate of 
change 

 
% Gas Compressor Outlet 
FCV103_PID_On  # In # [] 1=PID controlled, 0 is manual setpoint 
FCV103_PID_MS  # In # [% open] Manual Setpoint if PID is off 
FCV103_PID_P   # In # [%/gpm]     PID Controller P value 
FCV103_PID_I   # In # [%/(gpm*s)] PID Controller I value 
FCV103_PID_D   # In # [5/(gpm/s)] PID Controller D value 
FCV103_PID_Int # In # [s]         PID  Controller I: Integration 
time 
FCV103_PID_Lo  # In # [%]         PID Lo Limit 
FCV103_PID_Hi  # In # [%]         PID Hi Limit 
FCV103_HysVal  # In # [%] Hysteresis / Backlash 
FCV103_Orifice # In # [gpm/psi^0.5] Cv for orifice in series with 
control valve 
 
% Oil Pump Outlet 
FCV104_PID_On  # In # [] 1=PID controlled, 0 is manual setpoint 
FCV104_PID_MS  # In # [% open] Manual Setpoint if PID is off 
FCV104_PID_P   # In # [%/gpm]     PID Controller P value 
FCV104_PID_I   # In # [%/(gpm*s)] PID Controller I value 
FCV104_PID_D   # In # [%/(gpm/s)] PID Controller D value 
FCV104_PID_Int # In # [s]         PID  Controller I: Integration 
time 
FCV104_PID_Lo  # In # [%]         PID Lo Limit 
FCV104_PID_Hi  # In # [%]         PID Hi Limit 
FCV104_HysVal  # In # [%] Hysteresis / Backlash 
FCV104_Orifice # In # [gpm/psi^0.5] Cv for orifice in series with 
control valve 
 
% Water Pump Outlet 
FCV105_PID_On  # In # [] 1=PID controlled, 0 is manual setpoint 
FCV105_PID_MS  # In # [% open] Manual Setpoint if PID is off 
FCV105_PID_P   # In # [%/gpm]     PID Controller P value 
FCV105_PID_I   # In # [%/(gpm*s)] PID Controller I value 
FCV105_PID_D   # In # [%/(gpm/s)] PID Controller D value 
FCV105_PID_Int # In # [s]         PID  Controller I: Integration 
time 
FCV105_PID_Lo  # In # [%]         PID Lo Limit 
FCV105_PID_Hi  # In # [%]         PID Hi Limit 
FCV105_HysVal  # In # [%] Hysteresis / Backlash 
FCV105_Orifice # In # [gpm/psi^0.5] Cv for orifice in series with 
control valve 
 
% Oil Level Control Valve 
LCV122_PID_On  # In # [] 1=PID controlled, 0 is manual setpoint 
LCV122_PID_MS  # In # [% open] Manual Setpoint if PID is off 
LCV122_PID_P   # In # [%/(0-1)]     PID Controller P value 
LCV122_PID_I   # In # [%/((0-1)*s)] PID Controller I value 
LCV122_PID_D   # In # [%/((0-1)/s)] PID Controller D value 
LCV122_PID_Int # In # [s]           PID Controller I: Integration 
time 
LCV122_PID_Lo  # In # [%]           PID Lo Limit 
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LCV122_PID_Hi  # In # [%]           PID Hi Limit 
LCV122_HysVal  # In # [%] Hysteresis / Backlash 
LCV122_Orifice # In # [gpm/psi^0.5] Cv for orifice in series with 
control valve 
 
% water Level Control Valve 
LCV123_PID_On  # In # [] 1=PID controlled, 0 is manual setpoint 
LCV123_PID_MS  # In # [% open] Manual Setpoint if PID is off 
LCV123_PID_P   # In # [%/(0-1)]     PID Controller P value 
LCV123_PID_I   # In # [%/((0-1)*s)] PID Controller I value 
LCV123_PID_D   # In # [%/((0-1)/s)] PID Controller D value 
LCV123_PID_Int # In # [s]           PID Controller I: Integration 
time 
LCV123_PID_Lo  # In # [%]           PID Lo Limit 
LCV123_PID_Hi  # In # [%]           PID Hi Limit 
LCV123_HysVal  # In # [%] Hysteresis / Backlash 
LCV123_Orifice # In # [gpm/psi^0.5] Cv for orifice in series with 
control valve 
 
% Gas Pressure Control Valve 
PCV121_PID_On  # In # [] 1=PID controlled, 0 is manual setpoint 
PCV121_PID_MS  # In # [% open] Manual Setpoint if PID is off 
PCV121_PID_P   # In # [%/bar]     PID Controller P value 
PCV121_PID_I   # In # [%/(bar*s)] PID Controller I value 
PCV121_PID_D   # In # [%/(bar/s)] PID Controller D value 
PCV121_PID_Int # In # [s]         PID  Controller I: Integration 
time 
PCV121_PID_Lo  # In # [%]         PID Lo Limit 
PCV121_PID_Hi  # In # [%]         PID Hi Limit 
PCV121_HysVal  # In # [%] Hysteresis / Backlash 
PCV121_Orifice # In # [gpm/psi^0.5] Cv for orifice in series with 
control valve 
 
FT103 # -1 # [gpm] FT103 Gas # Flow rate Gas at compressor outlet 
C-101 post bypass 
FT104 # -1 # [gpm] FT104 Oil # Flow rate Oil at pump outlet P-101 
post bypass 
FT105 # -1 # [gpm] FT105 Water # Flow rate water at pump outlet 
P-103 post bypass 
LT122 # -1 # [(0-1)] LT122 # Oil-Gas Interface Level 
LT123 # -1 # [(0-1)] LT123 # Water-Oil Interface Level 
PT121 # -1 # [bara] PT121 # Pressure in Test Separator 
 
Target_QG # -1 # [gpm] Target QG # Set Point for Gas Flow Rate 
Target_QO # -1 # [gpm] Target QG # Set Point for Oil Flow Rate 
Target_QW # -1 # [gpm] Target QG # Set Point for Water Flow Rate 
Target_QG # -1 # [gpm] Target QG # Set Point for Gas Flow Rate 
Target_QG # -1 # [gpm] Target QG # Set Point for Gas Flow Rate 
 
% Gas Compressor Outlet 
FCV103_Setpoint # Value # [] FCV-103 Setpoint: 0 (shut) to 100 
(full open) 
FCV103_Pos      # Value # [% Open]        FCV-103 pump relief 
control valve Position 
FCV103_HysSt    # Value # (0-1) FCV-103 hysteresis # (0-1) 
Hysteresis / Backlash State 
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FCV103_Cv       # Value # [gpm/sqrt(psi)] FCV-103 pump relief 
control valve Cv 
 
% Oil Pump Outlet 
FCV104_Setpoint # Value # [] FCV-104 Setpoint: 0 (shut) to 100 
(full open) 
FCV104_Pos      # Value # [% Open]        FCV-104 pump relief 
control valve Position 
FCV104_HysSt    # Value # (0-1) FCV-104 hysteresis # (0-1) 
Hysteresis / Backlash State 
FCV104_Cv       # Value # [gpm/sqrt(psi)] FCV-104 pump relief 
control valve Cv 
 
% Water Pump Outlet 
FCV105_Setpoint # Value # [] FCV-105 Setpoint: 0 (shut) to 100 
(full open) 
FCV105_Pos      # Value # [% Open]        FCV-105 pump relief 
control valve Position 
FCV105_HysSt    # Value # (0-1) FCV-105 hysteresis # (0-1) 
Hysteresis / Backlash State 
FCV105_Cv       # Value # [gpm/sqrt(psi)] FCV-105 pump relief 
control valve Cv 
 
% Oil Level Control Valve 
LCV122_Setpoint # Value # [% Open] LCV122 Setpoint  # 0 (shut) to 
100 (full open) 
LCV122_Pos      # Value # [% Open] LCV122 Position  # 0 (shut) to 
100 (full open) 
LCV122_HysSt    # Value # (0-1) LCV122 hysteresis   # (0-1) 
Hysteresis / Backlash State 
LCV122_Cv       # Value # [gpm/sqrt(psi)] LCV122 Cv #  pump 
relief control valve Cv 
 
% water Level Control Valve 
LCV123_Setpoint # Value # [% Open] LCV123 Setpoint  # 0 (shut) to 
100 (full open) 
LCV123_Pos      # Value # [% Open] LCV123 Position  # 0 (shut) to 
100 (full open) 
LCV123_HysSt    # Value # (0-1) LCV123 hysteresis   # (0-1) 
Hysteresis / Backlash State 
LCV123_Cv       # Value # [gpm/sqrt(psi)] LCV123 Cv #  pump 
relief control valve Cv 
 
% Gas Pressure Control Valve 
PCV121_Setpoint # Value # [% Open] PCV121 Setpoint  # 0 (shut) to 
100 (full open) 
PCV121_Pos      # Value # [% Open] PCV121 Position  # 0 (shut) to 
100 (full open) 
PCV121_HysSt    # Value # (0-1) PCV121 hysteresis   # (0-1) 
Hysteresis / Backlash State 
PCV121_Cv       # Value # [gpm/sqrt(psi)] PCV121 Cv #  pump 
relief control valve Cv 
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e. Define time step and end time 

DTS         # value # Dynamic Run Time Step   
END         # value # Dynamic Run End Time   

 
f. Define $StreamVarList, $FluidList and $FluidPropList same as Steady-state run 

5.7 Tuning Process 
As aforementioned, the architecture of this program cannot compensate for lacking of physical 
understanding and/or data, but it should optimally use what is available.  Based on a small amount of 
test data, users can easily determine the range of the tuning parameters. Then by adding the amount of 
tuning, the tropology of the program can be carried out to minimize the simulation error between the 
experiment and model.  Figure 38 shows the trend of simulation error with tuning process. 

 

Figure 38: Simulation error vs. tuning process 

Since there are three different water levels (10cm, 17cm, and 25cm), three different oil levels (40cm, 
44cm, and 50cm), and three different flow rates (10m3/hr , 15m3/hr,  and 20m3/hr ) for both water and 
oil, the total count of run cases is 81 (The entire test matrix can be found in the appendix).  Among these 
tests, despite that the initial conditions such as temperature, pressure, pump speed, etc. vary slightly 
case by case, the most important inputs have been determined to be Total Flow Rate (Q), Water Cut 
(WC), Gas Volume Fraction (GVF), Water Level (L_w), and Oil Level (L_o).  The outputs that directly 
reflect the separation of the multiphase flow include Water-in-Oil (WiO) and Oil-in-Water (OiW).   In this 
section, we will go through an example (L_w = 10cm) to explain the tuning process. 

First, based on the Liquid-Liquid Cylindrical Cyclone (LLCC) Theory published by Oropeza-Vazquez, the 
Oil-in-Water (OiW) which represents the oil/water separation at the water outlet can be expressed as 

OiW = LOW1+ LOW2*SuVel(Oil)+ LOW3*SuVel(Water)+ LOW4*sum(SuVel) 

where LOW1, LOW2, LOW3, and LOW4 are four tuning parameters; “SuVel” represents Superficial 
Velocity.  The superficial velocities of gas, oil, and water are calculated from the inputs of the 
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experiments, as well as the OiW.  Thus, we basically only need four data points (run cases) to solve the 
four unknown tuning parameters from this linear equation.    

Second, we define the basic range of the tuning parameters.  There are 16 experimental data points for 
L_w = 10cm run cases.  By randomly selecting any four of them and repeating the process several times, 
it is simple to obtain the rough range of each tuning parameter.  The program can automatically tell 
users which value within the range gives the minimal RMS error between model and experiment.   

Therefore, by refining the range of each tuning parameter and thus getting more and more tunings, the 
RMS error will be finally reduced to a satisfied level.  We record the values of the four tuning parameters 
as the final values.   

Figure 39 shows the tuning process of this example.  It is observed that the RMS error decreases from 29 
percent to 15 percent as w increase the amount of tuning.  Apparently, the fitting of 15 percent error 
shows much better prediction compared to the 29 percent error fitting. 

 

Figure 39: Tuning process of OiW (L_w = 10cm) 
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5.8 Simulation Results 
Figure 40 shows the comparison between simulation and experimental data for the results of Oil in 
Water (OiW).  It is seen that the predicted results match the experiment very well.  The RMS error 
increases as reducing the water level.  When there is a higher water level in the separator, the values of 
OiW among these run cases are almost zero, which means only a small amount of oil can flow out from 
the water outlet.   

 

Figure 40: Comparison between simulation and experiment (OiW, Steady-state runs) with RMS error shown as a 
percentage 

Figure 41 shows the experimental data of WiO along with the results predicted by the program.  As can 
be observed, the agreement between experiment and model is very good.  The greatest RMS error 
happens at L_w = 17cm and L_o = 44, 50cm due to some abnormal data points.  It is also seen that, 
although higher water level gives better separation at the water outlet, it induces worse separation at 
the oil outlet, i.e., more water comes out of the oil outlet.  In addition, WiO shows a much clearer trend 
compared to OiW.  Figures 42 and 43 validate that the program has sufficient accuracy to predict the 
oil/water separation for steady-state cases.  



 

Subsea Processing Simulator – 07121-1901 Final Report  56 

 

 

 
Figure 26: Comparison between simulation and experiment (WiO, Steady-state runs) with RMS error shown as a 
percentage 

 
Figure 42 shows the trends of four tuning parameters for OiW and three tuning parameters for WiO.  
The purpose of these maps is to help users to determine the values of tuning parameters at certain 
water level and oil levels.  For instance, when L_w = 17cm and L_o = 40cm, the tuning parameters for 
predicting WiO are LWO1 = -4.1, LWO2 = 5.8, and LWO3 = -1.4. 
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Figure 42: Trends of tuning parameters 
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Figure 43: Comparison between simulation and experiment (transient run #1) 
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The experimental data versus model predictions comparison for data acquired under transient runs are 
presented in Figures 43 and 44.  Water level, oil level, and the target flow rates of gas/oil/water for each 
transient run case are listed in the corresponding figure.  The test data were recorded every five minutes 
until 20 minutes.  It is observed that the time histories of gas flow rate, oil flow rate, and water flow rate 
match the experimental data very well.  The same values of tuning parameters were used as steady-
state runs.  The comparison also reveals excellent agreement for WiO in both cases and OiW in case 2.  
The reason for the difference between experiment and simulation in OiW for case 1 is that this case 
exhibits the largest error in steady-state runs, shown as the right bottom plot.  Since the same tuning 
parameters are employed, the transient run keeps the same level of error for this particular case.   

 

 
Figure 27: Comparison between simulation and experiment (transient run #2) 



 

Subsea Processing Simulator – 07121-1901 Final Report  60 

 

5.9 Data Post-Processing 
In order to plot the Go/No-Go map that can help users to make the right decision, a specific surface 
fitting method has to be used since there are only limited experimental data points in Water Level vs. Oil 
Level plot.  Thin Plate Spline regression (TPS) fits a thin plate spline surface to irregularly spaced data. 
The smoothing parameter is chosen by generalized cross-validation.  A thin plate spline is result of 
minimizing the residual sum of squares subject to a constraint that the function has a certain level of 
smoothness (or roughness penalty). Roughness is quantified by the integral of squared m-th order 
derivatives.  Besides controlling the order of the derivatives, the value of m also determines the base 
polynomial that is fit to the data. The degree of this polynomial is (m-1).  In the program, the R function 
TPS() is used to realize the thin plate spline regression with the default setting. 
 
Figure 45 depicts OiW with respect to water level and oil level in a more straightforward way.  When the 
water level is higher and the oil level is lower, we expect to see more WiO and less OiW.  If we set the 
criteria for both WiO and OiW to “less than 25%”, the corresponding Go/No-Go maps are generated as 
Figure 46.  By overlapping the maps of WiO and OiW, one can easily obtain a Go/No-Go map to satisfy 
the criteria of oil/water separation at both water outlet and oil outlet.  For example, when the water 
level is set to be 19cm and oil level is set at 48cm, both WiO and OiW are less than 25 percent and 
provide approving separation.  In this example the zones of compliance to the performance target 
appear as separate islands.  If one of the specifications were to be considered more important than the 
other, aiming for the corresponding side of the island would ensure compliance with that requirement.  
If the simulations were to be repeated at different water cuts for the same total liquid flow rate, similar 
levels would result in different residence times for the oil and the water, and thus different boundaries 
for the water-in-oil and oil-in-water performance. 
 

 
Figure 45: WiO and OiW maps in Oil level-Water level plane 
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Figure 46: Go/No-Go maps for WiO and OiW (Criteria: <25%) shown as 2D maps above and 3D maps below. 

 
 

6 Conclusions 
An architectural model was developed on which subsea processing simulations can be developed. It is a 
general purpose process Simulator featuring minimal architectural overhead that puts all the 
functionality in user developed unit models.  The underlying goal is to remove all unnecessary 
impediments to allow the user full modeling license.  Hierarchical modeling is enabled by standardized 
unit model interfaces, arbitrarily expandable data structures, tag-based calls, and an organization that 
aids, if not enforces, documentation.  NPSS was used as the framework for the Simulator architecture.  A 
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MATLAB version was developed as a bottom up tool to help drive the development.  The Simulator has 
the capability to interface with commercial codes such as AspenTech’s HYSYS.   

A flow loop with a three-phase separator was developed as a vehicle for validation. A model of the loop 
was built with the Simulator, a test matrix was simulated, and the tuning process was used to match 
data to simulation. 

6.1 Future work 
With an architecture that is a viable framework to simulate subsea processing, the two logical next steps 
are to tackle a process that more closely simulates desirable produced flow management requirements 
in the GOM, and to simulate fluids that come closer to real produced fluids.  In modeling these 
processes, it is suggested that physics such as surface tension due to pressure changes or more complex 
physical models for the gravity separation be considered (i.e., considering droplet packing, foam 
formation, film drainage, etc.). 

6.2 Technology Transfer 
Technology transfer will be accomplished as follows.  AspenTech will take over and maintain the 
Simulator.  The unit models used to model the test flow loop have been translated into Aspentech’s 
Aspen Custom Modeler language and will be included in AspenTech’s Knowledge Database.  This will 
make the Simulator available to anyone with a license to AspenTech’s suite of software tools.  Through 
its consulting services AspenTech is available to assist users in the development of further system 
models and unit models. 
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Appendices 

A. M ATLAB Simulator Tutorial 

All simulator and model files used below are in this zip file:  

A.1 A control valve 
Let’s kick the tires and model something—a control valve.  The control valve will have liquid entering it 
at some flow rate and pressure.  The valve model will then calculate the pressure drop incurred across 
the valve as a function of how far open the control valve is.    

A.1.1 Control File 

Let us start with a blank control file attached: Control_BLANK.txt and start defining things.  After the 
comment symbol “%” on the first line let’s add a description of what this model will be.  Let’s define two 
unit models by listing them in the $UnitList block after the comments but before the next block 
delimiter ($):  

Tutorial_Upstream_1 # 1 # 1 # Upstream # Model that sets up upstream boundary conditions 
Valve_1  # 1 # 1 # Valve # easy valve model.   

No blank lines are allowed within blocks.  Note that the block comments guide the entry format.  The 
text before the first # delimiter is the tag for that model.  Appended to “model_,” it is also the m-file and 
function name.  The second text is the Instance number.  We can re-use the same models, and each can 
have its own parameters if so endowed.  The third integer is the number of outlets contained in this unit 
model.  The total number of outlets defines one of the dimensions of the stream and fluid data sub-
structures. The Long Name is useful as the plotting tool can automatically use this string for legends; 
otherwise, it will use the model name which may be cryptic. 

Next we can connect the two top-level unit models.  This is done by adding the following line in the 
Connectivity block: 

Tutorial_Upstream_1 # 1 # 1 # Valve_1 # 1 # Upstream BC to Valve. 

As suggested in the Connectivity block comments, this line says “Outlet number 1 of the 
Tutorial_Upstream_1 model instance number 1 is connected to Instance 1 of the Valve_1 model.”  This 
is not the only way to make connections, it is just convenient.  We might also package the output of 
Tutorial_Upstream_1 in the Global array and tell Valve_1 where to find it.  This will be important 
because unit models often communicate beyond neighbors.  Brain Teaser:  How does one handle 
reverse flow???  There are at least three distinct methods, left for now as an exercise. 
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Now we need to define our variables.  Necessary information includes a flow rate, upstream pressure, 
valve setting, and flow rate going out.  A fluid density will also be required.  After the $GB.Data block 
comments and before the %%% Procedural … line, add the following: 

Flow0  # 100 # [gpm] Q  # Initial Flow Rate 
Pressure0  # 100 # [psi] P    # Upstream Pressure 
Density  # 997 # [kg/m^3] Water Density 

Likewise in the $GlobalVarList block: 

Cv # 5 # [gpm/sqrt(psi)] Valve flow Coefficient # This characterizes the valve 

And in the $StreamVarList: 

Pressure # i # [psi] Pressure 
Flow        # e # [gpm] Flow Rate 

Note that I document the units.  Declaring variables automatically gives me a look-up table of sorts.  
Also, this is a steady state simulation, but I put Cv in the Global Block so I can store its time history during 
transient runs to be done later.  For the Stream Variables, I set a code for whether each property is 
intensive or extensive (or I can define other codes—they will only be used if I write a unit model that 
uses them.  Finally, if I were doing multiphase modeling, I would define a fluid (water) and a fluid 
property (Flow), and perhaps density, so that I could add different fluids and track their properties in 
this sub-structure instead of putting them in the Stream Variables list.  But for now this will suffice. 

Finally let’s look at the $SolverScript block.  I only have two top level unit models and they are ordered 
sequentially, so if I leave SolverOrder commented out it will execute them 1-2.  I don’t need iterations, 
so Single=True is fine.  I do not need the structures prepared for another time step or batch run, so I will 
set NoAdvance=true.  The last line, Tool_RunCase.m, will execute my instructions.  If I had a more 
complicated network of models, I could break it down into subsets and execute the models optimally. 

The Control File is now set and looks like this:  Tutorial_Valve_1.txt  

A.1.2 Unit Models 

Now we owe the Simulator a couple Unit Models.  Starting with a template model_BLANK.m we will save 
it as model_Tutorial_Upstream_1.m to be consistent with what we specified in the Control File.  The 
first line needs to be modified to have the correct name: 

 function [Global, Stream, GB] = model_Tutorial_Upstream_1(Global, 
Stream, Unit, GB, INs, OUTs, Instance) 
 
Note that the function gets and returns the data structures.  It also is given INs, which points to streams 
entering the model, and OUTs points to streams leaving the model which came from the connectivity 
block.  It also knows what Instance it is. 
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Documentation:  I comment on what this model does and copy in the lines from the Control File that 
this model needs for inputs and outputs - not needed but highly recommended.  The block of code to 
pass stream/fluid data from inlet(s) to outlet(s) is not needed as this is the upstream block, but I’ll leave 
it. 

Now for the model code: 

Stream.Data(OUTs(1),Stream.ID.Pressure,end)=GB.Data.Pressure0; %[psi] 
Stream.Data(OUTs(1),Stream.ID.Flow,end)=GB.Data.Flow0; %[gpm] 

 

That’s it.  It is a lot of unit model text for such a small amount of actual executed code, but documenting 
what is in the models is as important as what is in the models.  Note that the calls from the data 
structures are long, but self documenting.  You can tell what it is doing even though I haven’t yet 
presented how the data structures are set up.  This I will do now: 

• GB data is called by GB.Data.<GB Name>, where ‘GB Name’ is the tag given in the control file. 

• Global data is called as Global.Data(Global.ID.<Global Name>, end), where end signifies the 
current time step workspace.  If solving iterative solutions, be sure to use end-1 as appropriate 
and note that the code may need to be skipped on the very first time step. 

• Stream data is called as Stream.Data(<Location>,Stream.ID.<Stream Name>,end).  <Location> 
can be from INs or OUTs as demonstrated.  To connect somewhere else it looks like 
Unit.OutID.<Unit Name>_<Instance>(<outlet number>), which is unwieldy but necessary.  I 
generally don’t have to do this because if these quantities are this important, I dump them to a 
Global Array, which is easy for picking up as well as plotting. 

• Fluid data is at Stream.Fluid.Data(<Location>,Stream.Fluid.ID.<Fluid 
Name>,Stream.Fluid.PropID.<Fluid Property Name>,end) 

The upstream model version 1 is now done:  model_Tutorial_Upstream_1.m  

Now for the valve model.  We use the same steps above, and the actual model can look like: 

Cv=Global.Data(Global.ID.Cv,end); %[gpm/sqrt(psia)] 
Specific_Gravity=GB.Data.Density/1000; %[] 
Q=Stream.Data(INs(1),Stream.ID.Flow,end); %[gpm] 
  
DP=(Q/Cv)^2*Specific_Gravity; %[psi] Pressure drop across valve 
  
Stream.Data(OUTs(1),Stream.ID.Pressure,end)=Stream.Data(INs(1),Stream.I
D.Pressure,end)-DP; %[psi] 

 
The first three lines gather the data, the DP line calculates, and the last line returns the result.  Note the 
flow out of the valve was not need to be explicitly specified.  It was passed from inlet to outlet earlier. 

model_Valve_1.m  
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A.1.3 Run File 

Starting with Main_BLANK.m , I update the path (cd …) and name of the control file (fname) or comment 
them out to get a GUI.  I have nothing to plot, so I change “if true” to “if false”.  I am interested in the 
pressure out, which I obtain with: 

Stream.Data(Unit.OutID.Valve_1_1(1),Stream.ID.Pressure,end) 
 

I save the file as Main_Tutorial_Valve1.m , which I can then execute.  I get negative pressure which makes 
me realize I should go back and specify my units better (gauge or absolute pressure?).  I can drop the 
flow rate or open the valve more (increase Cv) in the Control File to make the outlet pressure positive.   

After executing the simulation, it is useful to look at the Data Structures to see how they are set up as 
the structures themselves are often a convenient place to check models and simulations. 

A.2 Time for a Transient Run 
Let’s add a PID control, which will receive a measurement (downstream pressure), compare it to a set 
point, and output a command (control valve Cv) in an attempt to minimize error.  I already have a PID 
controller model, so we will make a new Valve model that incorporates it as a sub-model.  Then we will 
upgrade the upstream unit model to set up transient boundary conditions and run the simulation. 

A.2.1 Valve Upgrade 

The PID model I will use looks like this: model_PID1.m . Looking at this model, I can examine the actual 
code, but if I trust the model and it is well documented, I don’t need to do so.  All I need to know is the 
variables it needs, which are documented at the head of the model, and make the connections and call 
in the host unit model.   

I make a new version of my Control File: Tutorial_Valve_2.txt and add the lines needed to declare the 
new variables to the $GB.Data block.  These are the “hooks” to connect my valve to the PID controller.  I 
set initial values to “0” or some other number.  Note that this PID model has bonus features such as a 
manual / PID control switch and limits, some of which we will hardwire in the valve model. 

Now we will modify and save our valve model as a new version (model_Valve_2.m), add the PID 
controller, and update the documentation.  The call to the PID controller is lengthy but explicit, which is 
useful for checking and documentation.  Note that the PID_Com is a sub-model input and output.   The 

resulting value for Cv is stored in the Global sub-structure previously defined  model_Valve_2.m . 

Likewise, the upstream unit model will be updated to facilitate time evolving upstream conditions 
,namely pressure and flow.  As demonstrated, it uses linear interpolation with vectors to describe 

pressure and flow at certain times model_Tutorial_Upstream_2.m . 
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Back in the control file, the $UnitList and $Connectivity blocks are updated with the new model names.  
All new variables are defined and the old upstream condition variables are removed.  The $SolverScript 
needs to have NoAdvance set to “false” since this is a transient run, but there is still no iteration of unit 

model execution required within a time step Tutorial_Valve_2.txt . 

The Control File can hold the vectors to define the upstream pressure and flow history, but I have 
chosen to do so in the Run File, which is also updated to make the relevant plots: 

model_Tutorial_Upstream_2.m  

The simulation is executed using this last file. 
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