## POWER PLANT WATER USAGE AND LOSS STUDY

August 2005

**Revised May 2007** 

Prepared for:



### The United States Department of Energy National Energy Technology Laboratory

DOE Gasification Technology Manager: Gary J. Stiegel

> DOE Project Manager: James R. Longanbach

> > Project Manager: Michael D. Rutkowski

Principal Investigators: Michael G. Klett Norma J. Kuehn Ronald L. Schoff Vladimir Vaysman Jay S. White

#### TABLE OF CONTENTS

| TABL   | E OF CONTENTS                                                   | I      |
|--------|-----------------------------------------------------------------|--------|
| LIST ( | OF TABLES                                                       | III    |
| LIST ( | OF FIGURES                                                      | V      |
| LIST ( | OF ACRONYMS AND ABBREVIATIONS                                   | VI     |
| EXEC   | UTIVE SUMMARY                                                   | IX     |
| Api    | PROACH                                                          | IX     |
| PLA    | ANT COMPARISONS                                                 | X      |
| RES    | SULTS                                                           | XI     |
| SUG    | GGESTED FUTURE WORK                                             | XII    |
| 1. I   | INTRODUCTION                                                    | 1      |
| 1.1    | Approach                                                        | 1      |
| 1.2    | PLANT COMPARISONS                                               | 2      |
| 1.3    | PLANT DESIGN BASIS                                              | 3      |
| 2. V   | WATER LOSS ANALYSIS OF THE CONOCOPHILLIPS E-GAS IGCC PLANT      | 8      |
| 2.1    | HEAT AND MATERIAL BALANCE                                       | 10     |
| 2.2    | Emissions Performance                                           | 14     |
| 2.3    | WATER BALANCES                                                  | 14     |
| 2.4    | RAW WATER USAGE                                                 | 18     |
| 3. V   | WATER LOSS ANALYSIS OF THE GE ENERGY RADIANT-CONVECTIVE IGCC PI | LANT19 |
| 3.1    | HEAT AND MATERIAL BALANCE                                       | 21     |
| 3.2    | Emissions Performance                                           | 25     |
| 3.3    | WATER BALANCES                                                  | 25     |
| 3.4    | RAW WATER USAGE                                                 | 29     |
| 4. V   | WATER LOSS ANALYSIS OF THE GE ENERGY QUENCH IGCC PLANT          |        |
| 4.1    | HEAT AND MATERIAL BALANCE                                       | 32     |
| 4.2    | Emissions Performance                                           | 36     |
| 4.3    | WATER BALANCES                                                  | 36     |
| 4.4    | RAW WATER USAGE                                                 | 40     |
| 5. V   | WATER LOSS ANALYSIS OF THE SHELL IGCC PLANT                     | 41     |
| 5.1    | HEAT AND MATERIAL BALANCE                                       | 43     |
| 5.2    | Emissions Performance                                           | 47     |
| 5.3    | WATER BALANCES                                                  | 47     |
| 5.4    | RAW WATER USAGE                                                 | 51     |
| 6. V   | WATER LOSS ANALYSIS OF A NATURAL GAS COMBINED CYCLE PLANT       | 52     |
| 6.1    | HEAT AND MATERIAL BALANCE                                       | 54     |
| 6.2    | Emissions Performance                                           | 57     |
| 6.3    | WATER BALANCES                                                  | 58     |
| 6.4    | RAW WATER USAGE                                                 | 60     |
| 7. V   | WATER LOSS ANALYSIS OF A SUBCRITICAL PULVERIZED COAL PLANT      | 62     |
| 7.1    | HEAT AND MATERIAL BALANCE                                       | 64     |
| 7.2    | Emissions Performance                                           | 67     |
| 7.3    | WATER BALANCES                                                  | 68     |
| 7.4    | RAW WATER USAGE                                                 | 70     |
| 8. V   | WATER LOSS ANALYSIS OF A SUPERCRITICAL PULVERIZED COAL PLANT    |        |

|    | 8.1 | HEAT AND MATERIAL BALANCE | .74 |
|----|-----|---------------------------|-----|
|    | 8.2 | EMISSIONS PERFORMANCE     | .77 |
|    | 8.3 | WATER BALANCES            | .78 |
|    | 8.4 | WATER USAGE               | .80 |
| 9. | RES | ULTS                      | .82 |
|    | 9.1 | PROCESS LOSSES            | .82 |
|    | 9.2 | FLUE GAS LOSSES           | .83 |
|    | 9.3 | COOLING WATER LOSSES      | .83 |
|    | 9.4 | RAW WATER USAGE           | .86 |
|    | 9.5 | RECOMMENDATIONS           | .88 |
|    |     |                           |     |

#### LIST OF TABLES

| Table ES-1 Water Loss Summary, gallons per MWhxiii                                          |
|---------------------------------------------------------------------------------------------|
| Table 1-1 Site Characteristics                                                              |
| Table 1-2 Base Coal Analysis – Pittsburgh No. 8                                             |
| Table 1-3 Natural Gas Analysis 6                                                            |
| Table 1-4 Greer Limestone Analysis 6                                                        |
| Table 1-5 Cooling System Assumptions7                                                       |
| Table 2-1 E-GAS IGCC Plant Performance Summary 100 Percent Load                             |
| Table 2-2 E-GAS <sup>TM</sup> Gasifier-Based Dual-Train IGCC Stream Tables (page 1 of 2) 12 |
| Table 2-3 Air Emissions IGCC, Oxygen-Blown E-GAS <sup>TM</sup> 14                           |
| Table 2-4 E-GAS <sup>TM</sup> IGCC Overall Water Balance                                    |
| Table 2-5 E-GAS <sup>TM</sup> IGCC Water Loss by Function 15                                |
| Table 2-6 E-GAS <sup>TM</sup> IGCC Water Balance Around Gasification Island 17              |
| Table 2-7 E-GAS <sup>TM</sup> IGCC Water Balance Around Power Island 17                     |
| Table 2-8 E-GAS <sup>TM</sup> IGCC Water Balance Around Cooling Water System                |
| Table 2-9 E-GAS <sup>TM</sup> IGCC Raw Water Usage                                          |
| Table 3-1 GE Energy Radiant-Convective IGCC Plant Performance Summary 100 Percent Load      |
|                                                                                             |
| Table 3-2 GE Energy Radiant-Convective IGCC Stream Tables (page 1 of 2)                     |
| Table 3-3 Airborne Emissions IGCC, Oxygen-Blown GE Energy Radiant-Convective                |
| Table 3-4 GE Energy Radiant-Convective IGCC Overall Water Balance                           |
| Table 3-5 GE Energy Radiant-Convective IGCC Water Loss by Function                          |
| Table 3-6 GE Energy Radiant-Convective IGCC Water Balance Around Gasification Island 28     |
| Table 3-7 GE Energy Radiant-Convective IGCC Water Balance Around Power Island               |
| Table 3-8 GE Energy Radiant-Convective IGCC Water Balance Around Cooling Water System       |
|                                                                                             |
| Table 3-9 GE Energy Radiant-Convective IGCC Raw Water Usage 29                              |
| Table 4-1 GE Energy Quench IGCC Plant Performance Summary 100 Percent Load 31               |
| Table 4-2 GE Energy Quench IGCC Stream Tables (page 1 of 2) 34                              |
| Table 4-3 Airborne Emissions IGCC, Oxygen-Blown GE Energy                                   |
| Table 4-4 GE Energy Quench IGCC Overall Water Balance                                       |
| Table 4-5 GE Energy Quench IGCC Water Loss by Function                                      |
| Table 4-6 GE Energy Quench IGCC Water Balance Around Gasification Island 39                 |
| Table 4-7 GE Energy Quench IGCC Water Balance Around Power Island 39                        |
| Table 4-8 GE Energy Quench IGCC Water Balance Around Cooling Water System                   |
| Table 4-9 GE Energy Quench IGCC Raw Water Usage 40                                          |
| Table 5-1 Shell IGCC Plant Performance Summary 100 Percent Load 42                          |
| Table 5-2 Shell Gasifier-Based Dual-Train IGCC Stream Tables (page 1 of 2) 45               |
| Table 5-3 Shell Gasifier Airborne Emissions IGCC, Oxygen-Blown Shell 47                     |
| Table 5-4 Shell IGCC Overall Water Balance                                                  |
| Table 5-5 Shell IGCC Water Loss by Function                                                 |
| Table 5-6 Shell IGCC Water Balance Around Gasification Island 50                            |
| Table 5-7 Shell IGCC Water Balance Around Power Island 50                                   |
| Table 5-8 Shell IGCC Water Balance Around Cooling Water System 50                           |
| Table 5-9 Shell IGCC Raw Water Usage 51                                                     |

| Table 6-2 Natural Gas Combined Cycle Stream Table56Table 6-3 Airborne Emissions Two 7FA x One NGCC57Table 6-4 NGCC Overall Water Balance58Table 6-5 NGCC Water Loss by Function58Table 6-6 NGCC Water Balance Around Gas Turbine Island60Table 6-7 NGCC Water Balance Around Cooling Water System60Table 6-8 NGCC Raw Water Usage61Table 7-1 Subcritical PC Boiler Plant Performance Summary 100 PERCENT LOAD63Table 7-2 Subcritical PC Boiler Stream Table66Table 7-3 Emission Limits Set by BACT67Table 7-5 Subcritical PC Boiler Overall Water Balance68Table 7-6 Subcritical PC Boiler Water Loss by Function68Table 7-7 Subcritical PC Boiler Water Balance Around FGD Island70Table 7-8 Subcritical PC Boiler Water Balance Around FGD Island70            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 6-3 Airborne Emissions Two 7FA x One NGCC57Table 6-4 NGCC Overall Water Balance58Table 6-5 NGCC Water Loss by Function58Table 6-6 NGCC Water Balance Around Gas Turbine Island60Table 6-7 NGCC Water Balance Around Cooling Water System60Table 6-8 NGCC Raw Water Usage61Table 7-1 Subcritical PC Boiler Plant Performance Summary 100 PERCENT LOAD63Table 7-2 Subcritical PC Boiler Stream Table66Table 7-3 Emission Limits Set by BACT67Table 7-4 Airborne Emissions Subcritical PC Boiler67Table 7-5 Subcritical PC Boiler Overall Water Balance68Table 7-6 Subcritical PC Boiler Water Loss by Function68Table 7-7 Subcritical PC Boiler Water Balance Around FGD Island70Table 7-8 Subcritical PC Boiler Water Balance Around Cooling Water System70 |
| Table 6-4 NGCC Overall Water Balance58Table 6-5 NGCC Water Loss by Function58Table 6-6 NGCC Water Balance Around Gas Turbine Island60Table 6-7 NGCC Water Balance Around Cooling Water System60Table 6-8 NGCC Raw Water Usage61Table 7-1 Subcritical PC Boiler Plant Performance Summary 100 PERCENT LOAD63Table 7-2 Subcritical PC Boiler Stream Table66Table 7-3 Emission Limits Set by BACT67Table 7-4 Airborne Emissions Subcritical PC Boiler67Table 7-5 Subcritical PC Boiler Overall Water Balance68Table 7-6 Subcritical PC Boiler Water Loss by Function68Table 7-7 Subcritical PC Boiler Water Balance Around FGD Island70Table 7-8 Subcritical PC Boiler Water Balance Around Cooling Water System70                                                  |
| Table 6-5 NGCC Water Loss by Function58Table 6-6 NGCC Water Balance Around Gas Turbine Island60Table 6-7 NGCC Water Balance Around Cooling Water System60Table 6-8 NGCC Raw Water Usage61Table 7-1 Subcritical PC Boiler Plant Performance Summary 100 PERCENT LOAD63Table 7-2 Subcritical PC Boiler Stream Table66Table 7-3 Emission Limits Set by BACT67Table 7-4 Airborne Emissions Subcritical PC Boiler67Table 7-5 Subcritical PC Boiler Overall Water Balance68Table 7-6 Subcritical PC Boiler Water Loss by Function68Table 7-7 Subcritical PC Boiler Water Balance Around FGD Island70Table 7-8 Subcritical PC Boiler Water Balance Around Cooling Water System70                                                                                        |
| Table 6-6 NGCC Water Balance Around Gas Turbine Island60Table 6-7 NGCC Water Balance Around Cooling Water System60Table 6-8 NGCC Raw Water Usage61Table 7-1 Subcritical PC Boiler Plant Performance Summary 100 PERCENT LOAD63Table 7-2 Subcritical PC Boiler Stream Table66Table 7-3 Emission Limits Set by BACT67Table 7-4 Airborne Emissions Subcritical PC Boiler67Table 7-5 Subcritical PC Boiler Overall Water Balance68Table 7-6 Subcritical PC Boiler Water Loss by Function68Table 7-7 Subcritical PC Boiler Water Balance Around FGD Island70Table 7-8 Subcritical PC Boiler Water Balance Around Cooling Water System70                                                                                                                               |
| Table 6-7 NGCC Water Balance Around Cooling Water System.60Table 6-8 NGCC Raw Water Usage61Table 7-1 Subcritical PC Boiler Plant Performance Summary 100 PERCENT LOAD63Table 7-2 Subcritical PC Boiler Stream Table66Table 7-3 Emission Limits Set by BACT67Table 7-4 Airborne Emissions Subcritical PC Boiler67Table 7-5 Subcritical PC Boiler Overall Water Balance68Table 7-6 Subcritical PC Boiler Water Loss by Function68Table 7-7 Subcritical PC Boiler Water Balance Around FGD Island70Table 7-8 Subcritical PC Boiler Water Balance Around Cooling Water System70                                                                                                                                                                                      |
| Table 6-8 NGCC Raw Water Usage61Table 7-1 Subcritical PC Boiler Plant Performance Summary 100 PERCENT LOAD63Table 7-2 Subcritical PC Boiler Stream Table66Table 7-3 Emission Limits Set by BACT67Table 7-4 Airborne Emissions Subcritical PC Boiler67Table 7-5 Subcritical PC Boiler Overall Water Balance68Table 7-6 Subcritical PC Boiler Water Loss by Function68Table 7-7 Subcritical PC Boiler Water Balance Around FGD Island70Table 7-8 Subcritical PC Boiler Water Balance Around Cooling Water System70                                                                                                                                                                                                                                                 |
| Table 7-1 Subcritical PC Boiler Plant Performance Summary 100 PERCENT LOAD63Table 7-2 Subcritical PC Boiler Stream Table66Table 7-3 Emission Limits Set by BACT67Table 7-4 Airborne Emissions Subcritical PC Boiler67Table 7-5 Subcritical PC Boiler Overall Water Balance68Table 7-6 Subcritical PC Boiler Water Loss by Function68Table 7-7 Subcritical PC Boiler Water Balance Around FGD Island70Table 7-8 Subcritical PC Boiler Water Balance Around Cooling Water System70                                                                                                                                                                                                                                                                                 |
| Table 7-2 Subcritical PC Boiler Stream Table66Table 7-3 Emission Limits Set by BACT67Table 7-4 Airborne Emissions Subcritical PC Boiler67Table 7-5 Subcritical PC Boiler Overall Water Balance68Table 7-6 Subcritical PC Boiler Water Loss by Function68Table 7-7 Subcritical PC Boiler Water Balance Around FGD Island70Table 7-8 Subcritical PC Boiler Water Balance Around Cooling Water System70                                                                                                                                                                                                                                                                                                                                                             |
| Table 7-3 Emission Limits Set by BACT67Table 7-4 Airborne Emissions Subcritical PC Boiler67Table 7-5 Subcritical PC Boiler Overall Water Balance68Table 7-6 Subcritical PC Boiler Water Loss by Function68Table 7-7 Subcritical PC Boiler Water Balance Around FGD Island70Table 7-8 Subcritical PC Boiler Water Balance Around Cooling Water System70                                                                                                                                                                                                                                                                                                                                                                                                           |
| Table 7-4 Airborne Emissions Subcritical PC Boiler67Table 7-5 Subcritical PC Boiler Overall Water Balance68Table 7-6 Subcritical PC Boiler Water Loss by Function68Table 7-7 Subcritical PC Boiler Water Balance Around FGD Island70Table 7-8 Subcritical PC Boiler Water Balance Around Cooling Water System70                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Table 7-5 Subcritical PC Boiler Overall Water Balance68Table 7-6 Subcritical PC Boiler Water Loss by Function68Table 7-7 Subcritical PC Boiler Water Balance Around FGD Island70Table 7-8 Subcritical PC Boiler Water Balance Around Cooling Water System70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Table 7-6 Subcritical PC Boiler Water Loss by Function68Table 7-7 Subcritical PC Boiler Water Balance Around FGD Island70Table 7-8 Subcritical PC Boiler Water Balance Around Cooling Water System70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Table 7-7 Subcritical PC Boiler Water Balance Around FGD Island70Table 7-8 Subcritical PC Boiler Water Balance Around Cooling Water System70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Table 7-8 Subcritical PC Boiler Water Balance Around Cooling Water System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Table 7-9 Subcritical PC Boiler Raw Water Usage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Table 8-1 Supercritical PC Boiler Plant Performance Summary 100 Percent Load    73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Table 8-2 Supercritical PC Boiler Stream Table 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Table 8-3 Emission Limits Set by BACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Table 8-4 Airborne Emissions Subcritical PC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Table 8-5 Supercritical PC Boiler Overall Water Balance 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Table 8-6 Supercritical PC Boiler Water Loss by Function 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Table 8-7 Supercritical PC Boiler Water Balance Around FGD Island    80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Table 8-8 Supercritical PC Boiler Water Balance Around Cooling Water System    80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Table 8-9 Supercritical PC Boiler Raw Water Usage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Table 9-1 Water Loss Summary, gallons per MWh 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Table 9-2 Water Loss Summary, gallons per MMBtu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Table 9-3 Raw Water Usage Summary, gallons per MWh 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

#### LIST OF FIGURES

| Figure ES-1 IGCC Water Loss Summary for Various Gasifier Types, gallons per MWhxiii          |
|----------------------------------------------------------------------------------------------|
| Figure ES-2 Comparison of Water Loss for Various Fossil Plants, gallons per MWh xiv          |
| Figure ES-3 Comparison of Raw Water Usage for Various Fossil Plants, gallons per MWh xiv     |
| Figure 2-1 E-GAS <sup>TM</sup> Gasifier-Based IGCC Case – Block Flow Diagram                 |
| Figure 2-2 E-GAS <sup>™</sup> Gasifier-Based IGCC Case – Block Flow Diagram – Water Flows in |
| Gallons per Minute                                                                           |
| Figure 3-1 GE Energy Radiant-Convective IGCC Case – Block Flow Diagram                       |
| Figure 3-2 GE Energy Radiant-Convective IGCC Case – Block Flow Diagram – Water Flows in      |
| Gallons per Minute                                                                           |
| Figure 4-1 GE Energy Quench IGCC Case – Block Flow Diagram                                   |
| Figure 4-2 GE Energy Quench IGCC Case – Block Flow Diagram – Water Flows in Gallons per      |
| Minute                                                                                       |
| Figure 5-1 Shell Gasifier-Based IGCC Case – Block Flow Diagram                               |
| Figure 5-2 Shell Gasifier-Based IGCC Case – Block Flow Diagram – Water Flows in Gallons      |
| per Minute                                                                                   |
| Figure 6-1 Natural Gas Combined Cycle Case – Block Flow Diagram                              |
| Figure 6-2 NGCC Case – Block Flow Diagram – Water Flows in Gallons per Minute 59             |
| Figure 7-1 Subcritical PC Boiler Case – Block Flow Diagram                                   |
| Figure 7-2 Subcritical PC Boiler Case – Block Flow Diagram – Water Flows in Gallons per      |
| Minute                                                                                       |
| Figure 8-1 Supercritical PC Boiler Case – Block Flow Diagram                                 |
| Figure 8-2 Supercritical PC Boiler Case – Block Flow Diagram – Water Flows in Gallons per    |
| Minute                                                                                       |
|                                                                                              |
| Figure 9-1 IGCC Water Loss Summary for Various Gasifier Types, gallons per MWh               |
| Figure 9-1 IGCC Water Loss Summary for Various Gasifier Types, gallons per MWh               |

| AGR Acid gas removal            |                                        |  |  |
|---------------------------------|----------------------------------------|--|--|
| ASU                             | Air separation unit                    |  |  |
| BACT                            | Best available control technology      |  |  |
| BFW                             | Boiler feedwater                       |  |  |
| Btu                             | British thermal unit                   |  |  |
| CAA                             | Clean Air Act                          |  |  |
| CAAA                            | Clean Air Act Amendments of 1990       |  |  |
| CCT                             | Clean coal technology                  |  |  |
| cfm                             | Cubic feet per minute                  |  |  |
| CF                              | Capacity factor                        |  |  |
| $CH_4$                          | Methane                                |  |  |
| $CO_2$                          | Carbon dioxide                         |  |  |
| COS                             | Carbonyl sulfide                       |  |  |
| CSC                             | Connective syngas cooler               |  |  |
| CT                              | Combustion turbine                     |  |  |
| CW                              | Cooling water                          |  |  |
| CWT                             | Cold water temperature                 |  |  |
| DLN                             | Dry low NOx                            |  |  |
| DOE                             | Department of Energy                   |  |  |
| E-Gas <sup>TM</sup>             | Global Energy gasifier technology      |  |  |
| EPA                             | Environmental Protection Agency        |  |  |
| EPC                             | Engineering, procurement, construction |  |  |
| ESP Electrostatic precipitator  |                                        |  |  |
| FD Forced draft                 |                                        |  |  |
| FGD                             | Flue gas desulfurization               |  |  |
| FRP                             | Fiberglass-reinforced plastic          |  |  |
| GE                              | General Electric                       |  |  |
| GE R-C                          | GE Energy Radiant-Convective IGCC      |  |  |
| GE Quench GE Energy Quench IGCC |                                        |  |  |
| gpm                             | Gallons per minute                     |  |  |
| GT                              | Gas turbine                            |  |  |
| h                               | Hour                                   |  |  |
| H <sub>2</sub> Hydrogen         |                                        |  |  |
| HHV Higher heating value        |                                        |  |  |

#### LIST OF ACRONYMS AND ABBREVIATIONS

| Hg                   | Mercury                                                  |
|----------------------|----------------------------------------------------------|
| hp                   | Horsepower                                               |
| HP                   | High pressure                                            |
| HRSG                 | Heat recovery steam generator                            |
| HWT                  | Hot water temperature                                    |
| Hz                   | Hertz                                                    |
| in. H <sub>2</sub> O | Inches water                                             |
| in. Hga              | Inches mercury (absolute pressure)                       |
| in. W.C.             | Inches water column                                      |
| ID                   | Induced draft                                            |
| IGCC                 | Integrated gasification combined cycle                   |
| IP                   | Intermediate pressure                                    |
| ISO                  | International Standards Organization                     |
| kV                   | Kilovolt                                                 |
| kW                   | Kilowatt                                                 |
| kWe                  | Kilowatts electric                                       |
| kWh                  | Kilowatt-hour                                            |
| kWt                  | Kilowatts thermal                                        |
| lb                   | Pound                                                    |
| LHV                  | Lower heating value                                      |
| LP                   | Low pressure                                             |
| MCR                  | Maximum coal burning rate                                |
| MDEA                 | Methyldiethanolamine                                     |
| MMBtu                | Million British thermal units (also shown as $10^6$ Btu) |
| MWe                  | Megawatts electric                                       |
| MWh                  | Megawatts-hour                                           |
| MWt                  | Megawatts thermal                                        |
| $N_2$                | Nitrogen                                                 |
| NETL                 | National Energy Technology Laboratory                    |
| N/A                  | Not applicable                                           |
| NGCC                 | Natural gas combined cycle                               |
| NH <sub>3</sub>      | Ammonia                                                  |
| NOx                  | Oxides of nitrogen                                       |
| NSPS                 | New Source Performance Standards                         |
| O&M                  | Operations and maintenance                               |
|                      |                                                          |

| PA                                          | Primary air                             |  |  |  |  |
|---------------------------------------------|-----------------------------------------|--|--|--|--|
| PC                                          | Pulverized coal                         |  |  |  |  |
| PC Sub                                      | Subcritical Pulverized coal system      |  |  |  |  |
| PC Super Supercritical Pulverized coal syst |                                         |  |  |  |  |
| pph                                         | Pounds per hour                         |  |  |  |  |
| ppmvd                                       | Parts per million volume, dry           |  |  |  |  |
| PSD                                         | Prevention of significant deterioration |  |  |  |  |
| psia                                        | Pounds per square inch absolute         |  |  |  |  |
| psig                                        | Pounds per square inch gage             |  |  |  |  |
| rpm                                         | Revolutions per minute                  |  |  |  |  |
| scfm                                        | Standard cubic feet per minute          |  |  |  |  |
| RSC                                         | Radiant syngas cooler                   |  |  |  |  |
| SC                                          | Supercritical                           |  |  |  |  |
| SCR                                         | Selective catalytic reduction           |  |  |  |  |
| SG                                          | Syngas                                  |  |  |  |  |
| $SO_2$                                      | Sulfur dioxide                          |  |  |  |  |
| ST                                          | Steam turbine                           |  |  |  |  |
| TGTU                                        | Tail gas treating unit                  |  |  |  |  |
| tpd                                         | Tons per day                            |  |  |  |  |
| tph                                         | Tons per hour                           |  |  |  |  |
| WB                                          | Wet bulb                                |  |  |  |  |
| wt%                                         | Weight percent                          |  |  |  |  |

#### EXECUTIVE SUMMARY

This report was updated in May 2007. The cooling tower evaporative and blowdown losses were overstated in the initial report, and those numbers were modified in this update. All numbers impacted by the change in cooling tower losses were also updated. No other changes were made.

Estimates have been previously made of water usage or water loss for conceptual power plant configurations and have been used as the basis for comparisons of the water impacts of technology options. These previous estimates have been made using available flow sheet data that have generally not been complete, and as a result have generated potentially misleading comparisons. It is important that any comparisons be made using data from complete water balances for the flow sheets and that all uses, makeup streams, discharges, internal generation and losses be accounted for in the balance and assessment of water streams in order to establish credible conclusions.

It is the intent of the study reported here to (1) establish a thorough accounting of water usage throughout the power plant and establish a credible methodology that can be used for future studies, (2) provide a baseline set of cases and water loss data for assessing potential improvements and evaluating R&D programs, and (3) provide a basis for comparing water usage in various types of advanced power systems.

The objective of this study is to prepare a source of information from which valid comparisons can be made for the water loss between the various fossil fuel power plants such as IGCC, PC, and NGCC. The purposes include:

- 1. Draw valid comparisons on a common basis for (a) various fossil fuel power generation technologies, and (b) different gasification technologies.
- 2. Provide data to evaluate the water usage and loss issues and identify areas for research and development to reduce water losses.
- 3. Provide an initial assessment of the potential for reduction in water loss in gasification applications through the use of technology improvements.

The current study has developed the information, methodology, and water accounting systems to enable a credible assessment of water usage and loss in power plant systems. This then achieves objective #1 above. Objectives #2 and 3 can be addressed in future studies using the methodology developed here.

#### APPROACH

This study is based on a normalized comparison of seven fossil fuel power plants, each designed from a common design basis, nominally producing 500 MWe net. Coal-fired plants used a common coal, and one plant was fired on natural gas. A common mid-USA site was used as the

base design plant location with evaporative cooling towers used to reject condenser heat. The plants reviewed included:

- ConocoPhillips E-Gas<sup>TM</sup> IGCC (E-Gas)
- GE Energy Radiant-Convective IGCC (GE R-C)
- GE Energy Quench IGCC (GE Quench)
- Shell IGCC (Shell)
- Natural Gas Combined Cycle (NGCC)
- Subcritical PC (PC Sub)
- Supercritical PC (PC Super)

#### PLANT COMPARISONS

For each of the plants, heat and material balances were prepared on a common basis with emphasis on the water usage and loss. The distinction between usage and loss is defined as follows:

**Raw Water Usage** is defined as the water metered from a raw water source and used in the plant processes for any and all purposes, such as cooling tower makeup, condenser makeup, slurry preparation makeup, ash handling makeup, syngas humidification, quench system makeup, and FGD system makeup. In this study, all plants are equipped with evaporative cooling towers, and all process blowdown streams are assumed to be treated and recycled to the cooling tower. Usage represents the overall impact of the process on the water source.

**Water Loss** is defined as the water exiting the system and represents the overall "loss" of water to the environment. Such losses can occur as physical losses including process blowdown streams, water entrained in solids, or gas streams vented to the atmosphere, or they can occur through chemical reactions such as gasification shift or hydrolysis. Because water also enters the system with the fuel and ambient air and through combustion reactions, water loss is greater than raw water usage. While the difference between raw water usage and water loss represents the liberation of fuel bound moisture and products of combustion which exit the system and enter the atmosphere, this potential net generation of water resources (water out > water in) is not directly available and is "lost" to the water budget

Water flows, makeup, and points of loss were identified and quantified. Since essentially all fuel-bound hydrogen ends up as water, hydrogen was tracked for each plant and major process area. The cooling tower makeup requirements were separately determined using a consistently applied methodology. Assessing the effects of climatological changes on plant performance and the need for oversizing equipment relative to the standard design have not been addressed in this report but could be considered for future studies.

For each of the seven power plants, the following were prepared:

• Plant Performance Summary

- Heat and Material Balance
- Emission Performance
- Process Block Flow Diagram
- Water Block Flow Diagram
- Overall Water Balance
- Major Plant Sections Water Balance

#### RESULTS

Water loss results are summarized in Table ES-1. Figure ES-1 shows the results in the form of a bar graph comparing various types of gasifiers. Figure ES-2 shows a comparison of various power plant systems. Water loss is based on an overall balance of the plant source and exit streams. This includes coal moisture, air humidity, process makeup, cooling tower makeup (equivalent to evaporation plus blowdown), process losses (including losses through reactions, solids entrainment, and process makeup/blowdown) and flue gas losses.

The raw water usage in this study is defined as the total amount of water to be supplied from local water resources to provide for the needs of the plant. Raw water usage differs from water loss. The difference is attributable to water entering the system via humid air intake, water content of the fuel, and water produced in gasification/combustion reactions. For example in the cooling tower, the raw water usage is makeup to the cooling tower while the cooling tower loss calculation includes water recycled from other sources. The raw water usage can be the determining factor for plant siting and permitting, as it may have a significant impact on local water availability. The results of the raw water usage calculations are summarized as a bar graph in Figure ES-3.

Process losses are more pronounced with the IGCC plants due to the need to add water to the gasification reactions and promote shift to hydrogen and carbon dioxide. There are no process losses with the NGCC plant. PC plant process losses are confined to water lost with disposal of the FGD gypsum cake. The process losses in each of the systems are the smallest category of loss.

Flue gas losses vary with the type of power plant and the methodology for conditioning either the syngas or the flue gas. Each of the IGCC plants has syngas humidification for NOx mitigation. All of the gasification cases utilize nitrogen injection to dilute the syngas, and the E-Gas and Shell cases have supplemental steam dilution along with the nitrogen dilution. This can be seen in the variations of flue gas water losses for the IGCC gas turbines. The NGCC does not utilize natural gas humidification before firing in the GT combustor; however, the flue gas losses are indicative of the water produced from the air and fuel. The PC power plants each have FGD. These wet processes result in significant water losses to the flue gas from evaporation.

Eighty to ninety-nine percent of the power plant raw water usage is through a combination of cooling tower evaporation and blowdown. This water usage is based on a generic site and

assumed cooling tower performance characteristics (see Section 1.3.3). Cooling tower performance as a function of plant condenser duty (plus 100 MMBtu/h of auxiliary load) was assumed for each power plant. Water loss differences are associated with plant condenser duty which can be traced back to plant efficiency and other uses of condensing steam such as methods of syngas humidification or syngas dilution.

#### SUGGESTED FUTURE WORK

This study consists of the initial phase of an effort to thoroughly document the use of water in power plants, particularly in IGCC applications. The plant configurations used here are based on current commercial offerings and on rigorous systems analysis results. The sites are generic middle USA and water for process and cooling makeup is readily available. There were no economic analyses performed.

- The plant designs from this study can be used as a baseline for conducting additional systems analysis. This analysis would be based upon such design changes as location, water use limitations, and plant efficiency. Changes in process design could also determine the sensitivity to water loss.
- This report should provide some basis for reviewing the design assumptions, technology capabilities, system performance, etc. and identify areas where new technology approaches or gasifier designs could lead to substantially lower water requirements. In turn, this can be a tool for planning R&D and gaining acceptance of out-of-the-box proposals for R&D projects.

|                                  | E-Gas   | Shell   | GE R-C  | GE Quench | NGCC    | PC Sub  | PC Supe |
|----------------------------------|---------|---------|---------|-----------|---------|---------|---------|
|                                  | gal/MWh | gal/MWh | gal/MWh | gal/MWh   | gal/MWh | gal/MWh | gal/MWh |
| Process losses                   |         |         |         |           |         |         |         |
| Coal drying moisture             |         | 3.3     |         |           |         |         |         |
| Water lost in gasification shift | 11.1    | 6.0     | 16.7    | 18.2      |         |         |         |
| Ash quench blowdown              | 8.7     | 7.8     | 8.4     | 9.3       |         |         |         |
| Water with slag                  | 3.0     | 3.7     | 3.3     | 3.7       |         |         |         |
| Water lost in COS hydrolysis     | 0.0     | 0.2     | 0.0     | 0.1       |         |         |         |
| Sour water blowdown              | 3.1     | 4.5     | 0.5     | 2.5       |         |         |         |
| Water with gypsum                |         |         |         |           |         | 9.3     | 8.3     |
| Total                            | 26      | 25      | 29      | 34        | 0       | 9       | 8       |
| F <u>lue gas losses</u>          |         |         |         |           |         |         |         |
| GT flue gas                      | 105.5   | 75.3    | 78.0    | 104.8     | 87.0    |         |         |
| Incinerator flue gas             |         | 1.5     |         |           |         |         |         |
| Boiler flue gas                  |         |         |         |           |         | 107.0   | 94.8    |
| Total                            | 106     | 77      | 78      | 105       | 87      | 107     | 95      |
| Cooling water losses             |         |         |         |           |         |         |         |
| Cooling tower blowdown           | 75.3    | 85.1    | 86.1    | 92.9      | 70.6    | 149.4   | 133.9   |
| Cooling tower evaporation        | 225.9   | 255.5   | 258.5   | 278.9     | 212.0   | 448.5   | 401.9   |
| Total                            | 301     | 341     | 345     | 372       | 283     | 598     | 536     |
| Grand Total                      | 433     | 443     | 452     | 510       | 370     | 714     | 639     |

Table ES-1 Water Loss Summary, gallons per MWh

Figure ES-1 IGCC Water Loss Summary for Various Gasifier Types, gallons per MWh



Figure ES-2 Comparison of Water Loss for Various Fossil Plants, gallons per MWh



Figure ES-3 Comparison of Raw Water Usage for Various Fossil Plants, gallons per MWh



#### 1. INTRODUCTION

Estimates have been previously made of water usage or water loss for conceptual power plant configurations and have been used as the basis for comparisons of the water impacts of technology options. These previous estimates have been made using available flow sheet data that have generally not been complete, and as a result have generated potentially misleading comparisons. It is important that any comparisons be made using data from complete water balances for the flow sheets and that all uses, makeup streams, discharges, internal generation and losses be accounted for in the balance and assessment of water streams in order to establish credible conclusions.

It is the intent of the study reported here to (1) establish a thorough accounting of water usage throughout the power plant and establish a credible methodology that can be used for future studies, (2) provide a baseline set of cases and water loss data for assessing potential improvements and evaluating R&D programs, and (3) provide a basis for comparing water usage in various types of advanced power systems.

The objective of this study is to prepare a source of information from which valid comparisons can be made for the water loss between the various fossil fuel power plants such as IGCC, PC, and NGCC. The purposes include:

- 1. Draw valid comparisons on a common basis for (a) various fossil fuel power generation technologies, and (b) different gasification technologies.
- 2. Provide data to evaluate the water usage and loss issues and identify areas for research and development to reduce water losses.
- 3. Provide an initial assessment of the potential for reduction in water loss in gasification applications through the use of technology improvements.

The current study has developed the information, methodology, and water accounting systems to enable a credible assessment of water usage and loss in power plant systems. This then achieves objective #1 above. Objectives #2 and 3 can be addressed in future studies using the methodology developed here.

#### 1.1 APPROACH

This study was based on a normalized comparison of seven fossil fuel power plants, each designed from a common design basis, nominally producing 500 MWe net. Coal-fired plants used a common coal, and one plant was fired on natural gas. A common mid-USA site was the base design plant location.

The plants reviewed were as follows:

- ConocoPhillips E-Gas<sup>TM</sup> IGCC (E-Gas)
- GE Energy Radiant-Convective IGCC (GE R-C)
- GE Energy Quench IGCC (GE Quench)
- Shell IGCC (Shell)
- Natural Gas Combined Cycle (NGCC)
- Subcritical PC (PC Sub)
- Supercritical PC (PC Super)

#### **1.2 PLANT COMPARISONS**

For each of the plants, heat and material balances were prepared on a common basis with emphasis on the water usage and loss. The distinction between usage and loss is defined as follows:

**Raw Water Usage** is defined as the water metered from a raw water source and used in the plant processes for any and all purposes, such as cooling tower makeup, condenser makeup, slurry preparation makeup, ash handling makeup, syngas humidification, quench system makeup, and FGD system makeup. In this study, all plants are equipped with evaporative cooling towers, and all process blowdown streams are assumed to be treated and recycled to the cooling tower. Usage represents the overall impact of the process on the water source.

**Water Loss** is defined as the water exiting the system and represents the overall "loss" of water to the environment. Such losses can occur as physical losses including process blowdown streams, water entrained in solids, or gas streams vented to the atmosphere, or they can occur through chemical reactions such as gasification shift or hydrolysis. Because water also enters the system with the fuel and ambient air and through combustion reactions, water loss is greater than raw water usage. While the difference between raw water usage and water loss represents the liberation of fuel bound moisture and products of combustion which exit the system and enter the atmosphere, this potential net generation of water resources (water out > water in) is not directly available and is "lost" to the water budget

Water flows, makeup, and points of loss were identified and quantified. Since essentially all fuel-bound hydrogen ends up as water, hydrogen was tracked for each plant and major process area. The cooling tower makeup requirements were separately determined using a consistently applied methodology as described in Section 1.3.3. Assessing the effects of climatological changes on plant performance and the need for oversizing equipment relative to the standard design have not been addressed in this report but could be considered for future studies.

For each of the seven power plants, the following were prepared as deliverables:

- Plant Performance Summary
- Heat and Material Balance
- Emission Performance
- Process Block Flow Diagram
- Water Block Flow Diagram
- Overall Water Balance
- Major Plant Sections Water Balance
- Discussion of Water Loss

#### **1.3 PLANT DESIGN BASIS**

The performance and environmental data developed in this report are the result of maintaining a consistent design basis throughout. Common design inputs for site, ambient, and fuel characteristics were developed and are defined in the following subsections.

#### **1.3.1** Plant Site and Ambient Design Conditions

The plant site is assumed to be a mid-United States location consisting of approximately 300 usable acres (not including ash disposal) within 15 miles of a medium-sized metropolitan area, with a well-established infrastructure capable of supporting the required construction work force. The area immediately surrounding the site has a mixture of agricultural and light industrial uses. The site is served by a river of adequate quantity for use as makeup cooling water with minimal pretreatment.

A railroad line suitable for unit coal trains passes within 2-1/2 miles of the site boundary. A well-developed road network serves the site, capable of carrying multiple loads and with overhead restriction of not less than 16 feet (Interstate Standard).

The site is on relatively flat land with a maximum difference in elevation within the site of about 30 feet. The topography of the area surrounding the site is rolling hills, with elevations within 2,000 yards not more than 300 feet above the site elevation.

The site is within Seismic Zone 1, as defined by the Uniform Building Code. Table 1-1 lists the ambient characteristics of this site.

| Location                          | Mid USA     |
|-----------------------------------|-------------|
| Topography                        | Level       |
| Elevation                         | 500 feet    |
| Design Air Pressure               | 14.4 psia   |
| Design Temperature, dry bulb      | 63°F        |
| Corresponding Relative Humidity   | 55%         |
| Design Temperature, dry bulb max. | 89°F        |
| Design Temperature, wet bulb max. | 75°F        |
| Design Temperature, min.          | 1°F         |
| Transportation                    | Rail access |
| Water                             | On site     |
| Ash Disposal                      | Off site    |

Table 1-1 Site Characteristics

#### 1.3.2 Feedstocks

Feedstocks are characterized in the following tables:

| Pittsburgh No. 8 coal | See Table 1-2 |
|-----------------------|---------------|
| Natural gas           | See Table 1-3 |
| Greer limestone       | See Table 1-4 |

| Ultimate Analysis                              |                |                |                |
|------------------------------------------------|----------------|----------------|----------------|
| Constituent                                    | Air Dry, %     | Dry, %         | As Received, % |
| Carbon                                         | 71.88          | 73.79          | 69.36          |
| Hydrogen                                       | 4.97           | 4.81           | 5.18           |
| Nitrogen                                       | 1.26           | 1.29           | 1.22           |
| Sulfur                                         | 2.99           | 3.07           | 2.89           |
| Ash                                            | 10.30          | 10.57          | 9.94           |
| Oxygen                                         | 8.60           | 6.47           | 11.41          |
| Total                                          | 100.00         | 100.00         | 100.00         |
| Proximate Analysis                             |                |                |                |
|                                                |                | Dry Basis, %   | As Received, % |
| Moisture                                       |                |                | 6.00           |
| Ash                                            |                | 10.57          | 9.94           |
| Volatile Matter                                |                | 38.20          | 35.91          |
| Fixed Carbon                                   |                | 51.23          | 48.15          |
|                                                | Total          | 100.00         | 100.00         |
|                                                |                |                |                |
| Sulfur                                         |                | 3.07           | 2.89           |
| Btu Content                                    |                | 13,244         | 12,450         |
| Moisture and Ash Free (MA                      | AF), Btu       | 14,810         |                |
| Ash Analysis, %                                |                |                |                |
| Silica, SiO <sub>2</sub>                       |                | 48.1           |                |
| Aluminum Oxide, Al <sub>2</sub> O <sub>3</sub> |                | 22.3           |                |
| Iron Oxide, Fe <sub>2</sub> O <sub>3</sub>     |                | 24.2           |                |
| Titanium Dioxide, TiO <sub>2</sub>             |                | 1.3            |                |
| Calcium Oxide, CaO                             |                | 1.3            |                |
| Magnesium Oxide, MgO                           |                | 0.6            |                |
| Sodium Oxide, Na <sub>2</sub> O                |                | 0.3            |                |
| Potassium Oxide, K <sub>2</sub> O              |                | 1.5            |                |
| Sulfur Trioxide, SO <sub>3</sub>               |                | 0.8            |                |
| Phosphorous Pentoxide, P <sub>2</sub>          | O <sub>5</sub> | 0.1            |                |
|                                                | Total          | 100            |                |
| Ash Fusion Temperature                         |                |                |                |
|                                                |                | Reducing       | Oxidizing      |
|                                                |                | Atmosphere, °F | Atmosphere, °F |
| Initial Deformation                            |                | 2015           | 2570           |
| Spherical                                      |                | 2135           | 2614           |
| Hemispherical                                  |                | 2225           | 2628           |
| Fluid                                          |                | 2450           | 2685           |

Table 1-2 Base Coal Analysis – Pittsburgh No. 8

ΙF.

| Natural Gas Analysis          |           |  |  |  |  |  |  |
|-------------------------------|-----------|--|--|--|--|--|--|
|                               | Volume, % |  |  |  |  |  |  |
| CH <sub>4</sub>               | 90        |  |  |  |  |  |  |
| C <sub>2</sub> H <sub>6</sub> | 5         |  |  |  |  |  |  |
| N <sub>2</sub>                | 5         |  |  |  |  |  |  |
| HHV, Btu/scf                  | 1,002     |  |  |  |  |  |  |
| HHV, Btu/lb                   | 21,824    |  |  |  |  |  |  |

Table 1-3 Natural Gas Analysis

# Table 1-4Greer Limestone Analysis

|                                                | Dry Basis, % |
|------------------------------------------------|--------------|
| Calcium Carbonate, CaCO3                       | 80.40        |
| Magnesium Carbonate, MgCO3                     | 3.50         |
| Silica, SiO <sub>2</sub>                       | 10.32        |
| Aluminum Oxide, Al <sub>2</sub> O <sub>3</sub> | 3.16         |
| Iron Oxide, Fe <sub>2</sub> O <sub>3</sub>     | 1.24         |
| Sodium Oxide, Na <sub>2</sub> O                | 0.23         |
| Potassium Oxide, K <sub>2</sub> O              | 0.72         |
| Balance                                        | 0.43         |

#### 1.3.3 Cooling System Makeup Methodology

All cases in this report are compared based on the cooling system as described in this subsection. Each design case assumes that the waste heat from all plant components is rejected by the closed recirculating water system equipped with evaporative mechanical draft cooling towers. Thus, the cooling system heat duty takes into account heat load not only from the steam turbine condenser, but also from the gasifier, combustion turbine, steam turbine, ASU and other plant auxiliaries.

Heat from the steam turbine condenser is removed by the circulating water system, which takes suction from the circulating water pumps located in the cooling tower basin. Heat from the balance-of-plant equipment is also removed by the cooling water system via the auxiliary cooling water system. In this study it is assumed that the auxiliary heat load is 100 MMBtu/h for all cases. The heated circulating water is then discharged back to the cooling tower where cooling occurs mostly by evaporation. While for a specific plant, the cooling system is optimized to meet project economic and technical design criteria, hypothetical assumptions were made for comparative purposes in this study.

Makeup water is drawn from the plant raw water supply system to account for water losses due to evaporation, cooling tower blowdown, and drift in the cooling system, and water losses related to other plant processes. Water losses due to evaporation are largely dependent upon

cooling system heat duty, since about 70% of heat in the cooling tower is rejected by evaporation. The amount of cooling system blowdown, generally a function of the makeup water quality, amounts to one-fourth of the makeup. The makeup water available for most cooling towers in the US will permit two to four cycles of concentrations of dissolved solids in the circulating water. For a specific installation, an economic balance between blowdown and water treatment is typically established in order to obtain the lowest capital costs. Four cycles of concentration are assumed for this study.

Cooling system sizing is based upon wet bulb average maximum temperatures that are exceeded by no more than 2% during the year for the Chicago area. Total water losses (evaporation, blowdown and drift) are calculated as follows: [1]

- Evaporative losses of 0.8 percent of the circulating water flow rate per 10°F of range
- Drift losses of 0.001 percent of the circulating water flow rate
- Blowdown losses as follows:
  - Blowdown Losses = Evaporative Losses / (Cycles of Concentration 1)

Where cycles of concentration is a measure of water quality, and a value of 4 was chosen for this study. Evaporative and drift losses are combined and reported as evaporative losses in the balance of the report.

Other cooling system assumptions in this study are summarized in Table 1-5:

| System type:    | ; towers                  |        |
|-----------------|---------------------------|--------|
| Design dry bu   | 89                        |        |
| Design wet bu   | 75                        |        |
| Cooling tower   | 5                         |        |
| Cooling tower   | 25                        |        |
| Cold circulatin | 80                        |        |
| Hot circulating | 105                       |        |
| Circulating wa  | 4                         |        |
| Cooling tower   | drift (% of CW flow rate) | 0.001% |

Table 1-5Cooling System Assumptions

<sup>&</sup>lt;sup>1</sup> <u>Cooling Tower Fundamentals</u>, ed. John C. Hensley, 2nd Edition, The Marley Cooling Tower Company, Mission, Kansas, 1985

#### 2. WATER LOSS ANALYSIS OF THE CONOCOPHILLIPS E-GAS IGCC PLANT

The study design goal was to track the water flows and usages for all the major sections of the plant. Since essentially all fuel-bound hydrogen ends up as water, hydrogen was also tracked for each plant and major process area. An overall water balance and a water balance for each major plant section was then generated.

This IGCC plant design is based on the ConocoPhillips Energy Corporation E-GAS<sup>TM</sup> gasification technology, which utilizes two pressurized entrained-flow E-GAS<sup>TM</sup> two-stage gasifiers to meet the syngas fuel requirements for two General Electric 7FA combustion turbines.

The power generation technology is based on selection of a gas turbine derived from the General Electric 7FA machine. The plant is configured with two gasifiers including processes to progressively cool and clean the gas, making it suitable for combustion in the gas turbines. The resulting plant produces a net output of 526 MWe at a net efficiency of 39.2 percent on an HHV basis. Performance is based on the properties of Pittsburgh No. 8 coal, described in the plant design basis. Overall performance for the entire plant is summarized in Table 2-1, which includes auxiliary power requirements.

| POWER SUMMARY (Gross Power at Generator Terminals, kWe) |                |  |  |  |  |
|---------------------------------------------------------|----------------|--|--|--|--|
| Gas Turbine Power                                       | 394,000        |  |  |  |  |
| Steam Turbine                                           | <u>227,900</u> |  |  |  |  |
| Total                                                   | 621,900        |  |  |  |  |
| AUXILIARY LOAD SUMMARY, kWe                             |                |  |  |  |  |
| Coal Handling                                           | 460            |  |  |  |  |
| Coal Milling                                            | 950            |  |  |  |  |
| Coal Slurry Pumps                                       | 330            |  |  |  |  |
| Slag Handling and Dewatering                            | 300            |  |  |  |  |
| Air Separation Unit Auxiliaries                         | 40,500         |  |  |  |  |
| Oxygen Compressor                                       | 10,220         |  |  |  |  |
| Main Nitrogen Compressor                                | 23,040         |  |  |  |  |
| Nitrogen Boost Compressor                               | 750            |  |  |  |  |
| Recycle Gas Blower                                      | 760            |  |  |  |  |
| Syngas Recycle Blower                                   | 2,370          |  |  |  |  |
| HP Boiler Feedwater Pump                                | 3,800          |  |  |  |  |
| LP Boiler Feedwater Pump                                | 200            |  |  |  |  |
| Humidification Tower Pump                               | 260            |  |  |  |  |
| Humidification Makeup Pump                              | 180            |  |  |  |  |
| Condensate Pump                                         | 400            |  |  |  |  |
| Flash Bottoms Pump                                      | 150            |  |  |  |  |
| Circulating Water Pumps                                 | 3,420          |  |  |  |  |
| Cooling Tower Fans                                      | 1,890          |  |  |  |  |
| Scrubber Pumps                                          | 400            |  |  |  |  |
| Amine Unit Auxiliaries                                  | 1,700          |  |  |  |  |
| Gas Turbine Auxiliaries                                 | 800            |  |  |  |  |
| Steam Turbine Auxiliaries                               | 400            |  |  |  |  |
| Claus Plant/TGTU Auxiliaries                            | 300            |  |  |  |  |
| Miscellaneous Balance of Plant                          | 1,000          |  |  |  |  |
| Transformer Loss                                        | 1,510          |  |  |  |  |
| TOTAL AUXILIARIES, kWe                                  | 96,070         |  |  |  |  |
| Net Power, kWe                                          | 525,830        |  |  |  |  |
| Net Plant Efficiency, % HHV                             | 39.2%          |  |  |  |  |
| Net Heat Rate, Btu/kWh (HHV)                            | 8,717          |  |  |  |  |
| CONDENSER COOLING DUTY, 106 Btu/h                       | 1,139          |  |  |  |  |
| CONSUMABLES                                             |                |  |  |  |  |
| As-Received Coal Feed, lb/h                             | 368,068        |  |  |  |  |
| Thermal Input, kWt                                      | 1,342,028      |  |  |  |  |
| Gasifier Oxygen (95% pure), lb/h                        | 323,028        |  |  |  |  |
| Claus Plant Öxygen (95% pure), lb/h                     | 4,819          |  |  |  |  |
| Water (for slurry), lb/h                                | 156,150        |  |  |  |  |

Table 2-1E-GAS IGCC Plant Performance Summary100 Percent Load

<sup>1</sup> HHV of As-Fed Pittsburgh 6 % Moisture Coal is 12,450 Btu/lb

#### 2.1 HEAT AND MATERIAL BALANCE

The heat and material balance for the IGCC plant is based on the syngas fuel requirements for two General Electric 7FA gas turbines. Ambient operating conditions are indicated in the plant design basis. The pressurized entrained flow E-GAS<sup>TM</sup> two-stage gasifier uses a coal/water slurry and oxygen to produce a medium heating value fuel gas.

The syngas produced in the gasifier first stage at about 2500°F is quenched to 1900°F by reacting with slurry injected into the second stage. The syngas passes through a fire tube boiler syngas cooler and leaves at 1060°F where it then is used to heat the fuel gas saturation water. High-pressure saturated steam is generated in the syngas cooler and is joined with the main steam supply.

The gas goes through a series of additional gas coolers and cleanup processes including a cyclone, filter, scrubber, COS hydrolysis reactor, and an amine-based AGR plant. Slag captured by the filter and syngas scrubber is recovered in a slag recovery unit. Regeneration gas from the AGR plant is fed to a Claus plant, where elemental sulfur is recovered.

This plant utilizes a combined cycle for combustion of the syngas from the gasifier to generate electric power. Syngas humidification along with steam and nitrogen dilution of the syngas aids in minimizing formation of  $NO_X$  during combustion in the gas turbine burner section. A Brayton cycle using air and combustion products as working fluid is used in conjunction with a conventional subcritical steam Rankine cycle. The two cycles are coupled by generation of steam in the heat recovery steam generator (HRSG), by feedwater heating in the HRSG, and by heat recovery from the IGCC process (fire tube boiler syngas cooler).

Figure 2-1 is a modified block flow diagram for the overall plant with individual streams identified. Table 2-2 follows the figure with detailed composition and state points for the numbered streams.



Figure 2-1 E-GAS<sup>TM</sup> Gasifier-Based IGCC Case – Block Flow Diagram

|                                      | 1       | 2      | 3      | 4       | 5       | 6 <sup>A</sup> | 7       | 8       | 9       | 10     |
|--------------------------------------|---------|--------|--------|---------|---------|----------------|---------|---------|---------|--------|
| V-L Mole Fraction                    |         |        |        |         |         |                |         |         |         |        |
| Ar                                   | 0.0094  | 0.0402 | 0.0360 | 0.0000  | 0.0360  | 0.0000         | 0.0000  | 0.0112  | 0.0091  | 0.0000 |
| CH <sub>4</sub>                      | 0.0000  | 0.0000 | 0.0000 | 0.0000  | 0.0000  | 0.0000         | 0.0000  | 0.0091  | 0.0074  | 0.0000 |
| CO                                   | 0.0000  | 0.0000 | 0.0000 | 0.0000  | 0.0000  | 0.0000         | 0.0000  | 0.5426  | 0.4418  | 0.0000 |
| CO <sub>2</sub>                      | 0.0003  | 0.0050 | 0.0000 | 0.0000  | 0.0000  | 0.0000         | 0.0000  | 0.0924  | 0.0752  | 0.5120 |
| COS                                  | 0.0000  | 0.0000 | 0.0000 | 0.0000  | 0.0000  | 0.0000         | 0.0000  | 0.0000  | 0.0000  | 0.0000 |
| H <sub>2</sub>                       | 0.0000  | 0.0000 | 0.0000 | 0.0000  | 0.0000  | 0.0000         | 0.0000  | 0.3294  | 0.2682  | 0.0000 |
| H <sub>2</sub> O                     | 0.0108  | 0.1850 | 0.0000 | 0.0000  | 0.0000  | 1.0000         | 0.0000  | 0.0062  | 0.1907  | 0.0623 |
| H <sub>2</sub> S                     | 0.0000  | 0.0000 | 0.0000 | 0.0000  | 0.0000  | 0.0000         | 0.0000  | 0.0000  | 0.0000  | 0.4257 |
| N <sub>2</sub>                       | 0.7719  | 0.7694 | 0.0140 | 1.0000  | 0.0140  | 0.0000         | 0.0000  | 0.0092  | 0.0075  | 0.0000 |
| NH <sub>3</sub>                      | 0.0000  | 0.0000 | 0.0000 | 0.0000  | 0.0000  | 0.0000         | 0.0000  | 0.0000  | 0.0000  | 0.0000 |
| O <sub>2</sub>                       | 0.2076  | 0.0004 | 0.9500 | 0.0000  | 0.9500  | 0.0000         | 0.0000  | 0.0000  | 0.0000  | 0.0000 |
| SO <sub>2</sub>                      | 0.0000  | 0.0000 | 0.0000 | 0.0000  | 0.0000  | 0.0000         | 0.0000  | 0.0000  | 0.0000  | 0.0000 |
| Total                                | 1.0000  | 1.0000 | 1.0000 | 1.0000  | 1.0000  | 1.0000         | 0.0000  | 1.0000  | 1.0000  | 1.0000 |
|                                      |         |        |        |         |         |                |         |         |         |        |
| V-L Flowrate (lb <sub>mol</sub> /hr) | 28,559  | 2,725  | 150    | 33,714  | 10,023  | 8,668          | 0       | 32,831  | 40,316  | 747    |
| V-L Flowrate (lb/hr)                 | 823,906 | 72,819 | 4,819  | 944,459 | 323,028 | 156,150        | 0       | 685,753 | 820,610 | 28,517 |
| Solids Flowrate (lb/hr)              | 0       | 0      | 0      | 0       | 0       | 368,068        | 37,850  | 0       | 0       | 0      |
|                                      |         |        |        |         |         |                |         |         |         |        |
| Temperature (°F)                     | 225     | 70     | 90     | 450     | 305     | 59             | 2,500   | 123     | 535     | 123    |
| Pressure (psia)                      | 190.0   | 16.4   | 30.0   | 295.0   | 560.0   | 14.4           | 500.0   | 370.8   | 350.0   | 30.2   |
| Density (lb/ft <sup>3</sup> )        | 0.746   | 0.125  | 0.164  | 0.847   | 2.199   | 62.622         | 185.286 | 1.240   | 0.667   | 0.186  |
| Molecular Weight                     | 28.849  | 26.743 | 32.229 | 28.013  | 32.229  | 18.015         | -       | 20.888  | 20.354  | 38.165 |

Table 2-2E-GAS<sup>TM</sup> Gasifier-Based Dual-Train IGCC Stream Tables (page 1 of 2)

A - Solids flowrate includes dry coal; V-L flowrate includes slurry water and water from coal

|                                      | 11      | 12     | 13     | 14        | 15      | 16        | 17        |
|--------------------------------------|---------|--------|--------|-----------|---------|-----------|-----------|
| V-L Mole Fraction                    |         |        |        |           |         |           |           |
| Ar                                   | 0.0000  | 0.0048 | 0.0092 | 0.0094    | 0.0094  | 0.0085    | 0.0085    |
| CH <sub>4</sub>                      | 0.0000  | 0.0000 | 0.0184 | 0.0000    | 0.0000  | 0.0000    | 0.0000    |
| CO                                   | 0.0000  | 0.0514 | 0.0004 | 0.0000    | 0.0000  | 0.0000    | 0.0000    |
| CO <sub>2</sub>                      | 0.0000  | 0.5637 | 0.8659 | 0.0003    | 0.0003  | 0.0784    | 0.0784    |
| COS                                  | 0.0000  | 0.0003 | 0.0000 | 0.0000    | 0.0000  | 0.0000    | 0.0000    |
| H <sub>2</sub>                       | 0.0000  | 0.0070 | 0.0101 | 0.0000    | 0.0000  | 0.0000    | 0.0000    |
| H <sub>2</sub> O                     | 0.0000  | 0.3631 | 0.0908 | 0.0108    | 0.0108  | 0.0949    | 0.0949    |
| H <sub>2</sub> S                     | 0.0000  | 0.0021 | 0.0000 | 0.0000    | 0.0000  | 0.0000    | 0.0000    |
| N <sub>2</sub>                       | 0.0000  | 0.0027 | 0.0051 | 0.7719    | 0.7719  | 0.7149    | 0.7149    |
| NH <sub>3</sub>                      | 0.0000  | 0.0000 | 0.0000 | 0.0000    | 0.0000  | 0.0000    | 0.0000    |
| 0 <sub>2</sub>                       | 0.0000  | 0.0000 | 0.0000 | 0.2076    | 0.2076  | 0.1033    | 0.1033    |
| SO <sub>2</sub>                      | 0.0000  | 0.0049 | 0.0000 | 0.0000    | 0.0000  | 0.0000    | 0.0000    |
| Total                                | 0.0000  | 1.0000 | 1.0000 | 1.0000    | 1.0000  | 1.0000    | 1.0000    |
|                                      |         |        |        |           |         |           |           |
| V-L Flowrate (lb <sub>mol</sub> /hr) | 41      | 1,133  | 584    | 224,441   | 18,067  | 270,427   | 270,429   |
| V-L Flowrate (lb/hr)                 | 10,600  | 37,924 | 23,697 | 6,475,020 | 521,220 | 7,796,990 | 7,796,990 |
| Solids Flowrate (lb/hr)              | 0       | 0      | 0      | 0         | 0       | 0         | 0         |
|                                      |         |        |        |           |         |           |           |
| Temperature (°F)                     | 359     | 450    | 120    | 59        | 755     | 1,094     | 249       |
| Pressure (psia)                      | 23.6    | 23.5   | 22.2   | 14.4      | 205.1   | 14.8      | 14.8      |
| Density (lb/ft <sup>3</sup> )        | 329.126 | 0.081  | 0.147  | 0.075     | 0.454   | 0.026     | 0.056     |
| Molecular Weight                     | 256.528 | 33.480 | 40.583 | 28.849    | 28.849  | 28.832    | 28.832    |

Table 2-2 (cont'd)E-GAS<sup>TM</sup> Gasifier-Based Dual-Train IGCC Stream Tables (page 2 of 2)

#### 2.2 EMISSIONS PERFORMANCE

The operation of the combined cycle unit in conjunction with oxygen-blown IGCC technology is projected to result in very low levels of emissions of  $NO_X$ ,  $SO_2$ , and particulate. A salable byproduct is produced in the form of elemental sulfur. A summary of the plant emissions is presented in Table 2-3.

|                 | lb/106 Btu | tons/year<br>80% capacity | lb/MWh |  |
|-----------------|------------|---------------------------|--------|--|
| SO <sub>2</sub> | 0.014      | 221                       | 0.120  |  |
| NO <sub>X</sub> | 0.024      | 386                       | 0.210  |  |
| Particulates    | 0.006      | 98                        | 0.053  |  |
| CO <sub>2</sub> | 204        | 3,269,000                 | 1,774  |  |

Table 2-3 Air Emissions IGCC, Oxygen-Blown E-GAS™

The low level of  $SO_2$  in the plant emissions is achieved by capture of the sulfur in the gas by the amine-based AGR process. The AGR process removes over 99 percent of the sulfur compounds in the fuel gas down to a level of 30 ppm. This results in a concentration in the flue gas of 3 ppm. The H<sub>2</sub>S-rich regeneration gas from the AGR system is fed to a Claus plant, producing elemental sulfur. The tail gas treatment unit removes most of the sulfur from the Claus tail gas, which is recycled to the Claus unit. Tail gas from the tail gas treatment unit is recycled to the gasifier.

 $NO_X$  emissions are limited to 5 ppmvd in the flue gas (normalized to 15 percent  $O_2$ ) by the combined use of syngas dilution (humidification along with steam and nitrogen dilution), and combustion turbine firing based on the DOE/GE development programs to lower  $NO_X$  emissions to single digits. Ammonia is removed with process condensate prior to the low-temperature AGR process, which helps lower  $NO_X$  levels as well. A selective catalytic reduction (SCR) process is not required.

Particulate discharge to the atmosphere is limited to extremely low values by the use of the syngas scrubber and the gas washing effect of the AGR absorber.

 $CO_2$  emissions are equal to those of other coal-burning facilities on an intensive basis (1b/10<sup>6</sup> Btu), since a similar fuel is used. However, total  $CO_2$  emissions are lower for a plant with this capacity due to the relatively high thermal efficiency.

#### 2.3 WATER BALANCES

Figure 2-2 shows the water flows through the entire plant in gallons per minute. All the water is accounted for including the water lost in chemical reactions or gained in the combustion of

hydrogen in the syngas. Table 2-4 shows an overall water balance for the entire plant and Table 2-5 shows the water loss by major function. The cooling water system is by far the largest water consumer accounting for approximately 70 percent of the water lost followed by 24 percent of the water lost in the flue gas. The slurry fed E-Gas gasification process accounts for 6 percent of the losses.

|    | Water In                                  |            |    | Water Out                        |            |
|----|-------------------------------------------|------------|----|----------------------------------|------------|
| No | Location                                  | Flow (gpm) | No | Location                         | Flow (gpm) |
| 1  | Moisture in coal                          | 44.2       | Α  | Water Lost in Gasification Shift | 97.4       |
| С  | Syngas Combustion of H <sub>2</sub> in GT | 411.0      | 6  | Ash Handling Blowdown            | 76.6       |
| 22 | Combustion air for GT                     | 80.3       | 7  | Water with Slag                  | 26.5       |
| 33 | Raw Water                                 | 3,256      | В  | Water loss in COS Hydrolysis     | 0.2        |
|    | Moisture in Air to ASU                    | 18.1       | 24 | GT Flue gas                      | 924.4      |
|    |                                           |            | 31 | Sour water blowdown              | 26.8       |
|    |                                           |            | 37 | Cooling tower blowdown           | 659.7      |
|    |                                           |            | 36 | Cooling tower evaporation        | 1,980      |
|    |                                           |            |    | Moisture from ASU Vent           | 18.1       |
|    |                                           | 3,810      |    |                                  | 3,810      |

Table 2-4E-GASTM IGCC Overall Water Balance

Table 2-5E-GAS<sup>TM</sup> IGCC Water Loss by Function

|                                  |       | 1/8 43 4 /1 |
|----------------------------------|-------|-------------|
| Gasification losses              | gpm   | gal/MWh     |
| Water Lost in Gasification Shift | 97.4  | 11.1        |
| Ash Handling Blowdown            | 76.6  | 8.7         |
| Water with Slag                  | 26.5  | 3.0         |
| Water loss in COS Hydrolysis     | 0.2   | 0.0         |
| Sour water blowdown              | 26.8  | 3.1         |
| Total                            | 227.5 | 26.0        |
| Flue gas losses                  |       |             |
| GT Flue gas                      | 924.4 | 105.5       |
| Total                            | 924.4 | 105.5       |
| Cooling water losses             |       |             |
| Cooling tower blowdown           | 659.7 | 75.3        |
| Cooling tower evaporation        | 1,980 | 225.9       |
| Total                            | 2,640 | 301.2       |
| Grand Total                      | 3.792 | 432.7       |

Figure 2-2 E-GAS<sup>TM</sup> Gasifier-Based IGCC Case – Block Flow Diagram – Water Flows in Gallons per Minute



Table 2-6 shows the water balance around the gasification island.

|    | Water In                  |            |    | Water Out                        |            |
|----|---------------------------|------------|----|----------------------------------|------------|
| No | Location                  | Flow (gpm) | No | Location                         | Flow (gpm) |
| 1  | Moisture in coal          | 44.2       | Α  | Water Lost in Gasification Shift | 97.4       |
| 4  | Slurry Makeup Water       | 72.2       | 6  | Ash Handling Blowdown            | 76.6       |
| 5  | Raw water to ash handling | 87.4       | 7  | Water with Slag                  | 26.5       |
| 19 | From Humidifier Blowdown  | 31.5       | В  | Water loss in COS Hydrolysis     | 0.2        |
|    |                           |            | 16 | Syngas to Humidification         | 7.3        |
|    |                           |            | 31 | Sour water blowdown              | 26.8       |
|    |                           | 235        |    |                                  | 235        |

Table 2-6E-GAS<sup>TM</sup> IGCC Water Balance Around Gasification Island

Table 2-7 shows the water balance around the power island. A major portion of the water in the flue gas is from the combustion of hydrogen in the syngas produced during gasification, shift and COS hydrolysis.

Table 2-7E-GASTM IGCC Water Balance Around Power Island

| Water In |                                           |            |    | Water Out               |            |
|----------|-------------------------------------------|------------|----|-------------------------|------------|
| No       | Location                                  | Flow (gpm) | No | Location                | Flow (gpm) |
| 16       | Syngas to Humidification                  | 7.3        | 19 | Humidification blowdown | 31.5       |
| 18       | Humidifier makeup water                   | 301.1      | 23 | GT Flue gas             | 924.4      |
| 21       | GT Diluent Steam                          | 156.15     |    | -                       |            |
| С        | Syngas Combustion of H <sub>2</sub> in GT | 411.0      |    |                         |            |
| 22       | Combustion air for GT                     | 80.3       |    |                         |            |
|          |                                           | 956        |    |                         | 956        |

Table 2-8 shows the water balance around the cooling water system. The wet cooling tower accounts for the majority of the water used in this section.

Table 2-8E-GAS<sup>TM</sup> IGCC Water Balance Around Cooling Water System

|    | Water In  |            |    | Water Out                 |            |  |  |
|----|-----------|------------|----|---------------------------|------------|--|--|
| No | Location  | Flow (gpm) | No | Location                  | Flow (gpm) |  |  |
| 33 | Raw Water | 3,256      | 5  | Raw water to ash handling | 87.4       |  |  |
|    |           |            | 21 | GT Diluent Steam          | 156.15     |  |  |
|    |           |            | 18 | Humidifier makeup water   | 301.1      |  |  |
|    |           |            | 37 | Cooling tower blowdown    | 659.7      |  |  |
|    |           |            | 36 | Cooling tower evaporation | 1,980      |  |  |
|    |           |            | 4  | Slurry Makeup Water       | 72.2       |  |  |
|    |           | 3,256      |    |                           | 3,256      |  |  |

#### 2.4 RAW WATER USAGE

The raw water usage as calculated in this study represents the total amount of water to be supplied from local water resources to provide for the needs of the plant. The amount differs from the total water losses, or the totals appearing in the Overall Water Balance. The difference is attributable to water contributed to the balance via humid air intake to the process, water content of the fuel, and water produced in gasification/combustion. For example, the raw water usage to the cooling tower is calculated as the raw water makeup delivered directly to the cooling tower while the cooling tower loss calculation includes water recycled from other sources. The raw water usage for each power plant can be the determining factor for siting and permitting, as it identifies the impact of the plant on local water availability. Table 2-9 shows the raw water for the plant and the usage through branch streams required to supplement process losses and flue gas losses.

| Water In |           |       |       | Water Usage |                              |       |       |
|----------|-----------|-------|-------|-------------|------------------------------|-------|-------|
| No       | Location  | Flow  | gal/  | No          | Location                     | Flow  | gal/  |
|          |           | (gpm) | MWh   |             |                              | (gpm) | MWh   |
| 33       | Raw Water | 3,256 | 371.6 | 4           | Makeup to Slurry System      | 72.2  | 8.2   |
|          |           |       |       | 5           | Makeup water to ash handling | 87.4  | 10.0  |
|          |           |       |       | 18          | Makeup to Humidifier         | 301.1 | 34.4  |
|          |           |       |       | 34          | Makeup to Cooling Tower      | 2,630 | 300.1 |
|          |           |       |       | 35          | Makeup to Condenser          | 165.6 | 18.9  |
|          |           | 3,256 | 372   |             |                              | 3,256 | 372   |

Table 2-9E-GASTM IGCC Raw Water Usage

#### 3. <u>WATER LOSS ANALYSIS OF THE GE ENERGY RADIANT-CONVECTIVE IGCC</u> <u>PLANT</u>

The study design goal was to track the water flows and usages for all the major sections of the plant. Since essentially all fuel-bound hydrogen ends up as water, hydrogen was also tracked for each plant and major process area. An overall water balance and a water balance for each major plant section was then generated.

This IGCC plant design is based on the GE Energy technology, which utilizes a pressurized entrained-flow, oxygen-blown gasification process. The plant configuration is based on the radiant/convective gasifier option operating at approximately 815 psia.

The power generation technology is based on selection of two gas turbines derived from the General Electric 7FA machine. The plant is configured with two operating gasifiers including processes to progressively cool and clean the gas, making it suitable for combustion in the gas turbines. The resulting plant produces a net output of 571 MWe at a net efficiency of 39.4 percent on an HHV basis. Performance is based on the properties of Pittsburgh No. 8 coal, described in the plant design basis. Overall performance for the entire plant is summarized in Table 3-1 which includes auxiliary power requirements.

| POWER SUMMARY (Gross Power at Generator Terminals, kWe) |           |  |  |  |  |  |  |
|---------------------------------------------------------|-----------|--|--|--|--|--|--|
| Gas Turbine Power                                       | 394,000   |  |  |  |  |  |  |
| Sweet Gas Expander Power                                | 9,670     |  |  |  |  |  |  |
| Steam Turbine                                           | 270,180   |  |  |  |  |  |  |
| Total                                                   | 673,850   |  |  |  |  |  |  |
| AUXILIARY LOAD SUMMARY, KWe                             |           |  |  |  |  |  |  |
| Coal Handling                                           | 520       |  |  |  |  |  |  |
| Coal Milling                                            | 1,050     |  |  |  |  |  |  |
| Coal Slurry Pumps                                       | 360       |  |  |  |  |  |  |
| Slag Handling and Dewatering                            | 210       |  |  |  |  |  |  |
| Air Separation Unit Auxiliaries                         | 44,200    |  |  |  |  |  |  |
| Oxygen Compressor                                       | 15,300    |  |  |  |  |  |  |
| Main Nitrogen Compressor                                | 22,650    |  |  |  |  |  |  |
| Nitrogen Boost Compressor                               | 880       |  |  |  |  |  |  |
| Claus Tail Gas Recycle Compressor                       | 770       |  |  |  |  |  |  |
| HP Boiler Feedwater Pumps                               | 4,200     |  |  |  |  |  |  |
| IP Boiler Feedwater Pumps                               | 100       |  |  |  |  |  |  |
| LP Boiler Feedwater Pumps                               | 30        |  |  |  |  |  |  |
| Humidification Tower Pumps                              | 130       |  |  |  |  |  |  |
| Scrubber Pumps                                          | 100       |  |  |  |  |  |  |
| Circulating Water Pumps                                 | 3,080     |  |  |  |  |  |  |
| Cooling Tower Fans                                      | 1,840     |  |  |  |  |  |  |
| Condensate Pump                                         | 280       |  |  |  |  |  |  |
| Selexol Unit Auxiliaries                                | 2,810     |  |  |  |  |  |  |
| Gas Turbine Auxiliaries                                 | 800       |  |  |  |  |  |  |
| Steam Turbine Auxiliaries                               | 400       |  |  |  |  |  |  |
| Claus Plant Auxiliaries                                 | 200       |  |  |  |  |  |  |
| Miscellaneous Balance of Plant                          | 1,000     |  |  |  |  |  |  |
| Transformer Loss                                        | 1,690     |  |  |  |  |  |  |
| TOTAL AUXILIARIES, kWe                                  | 102,600   |  |  |  |  |  |  |
| Net Power, kWe                                          | 571,250   |  |  |  |  |  |  |
| Net Plant Efficiency, % HHV                             | 39.4%     |  |  |  |  |  |  |
| Net Heat Rate, Btu/kWh (HHV)                            | 8,668     |  |  |  |  |  |  |
| CONDENSER COOLING DUTY, 106 Btu/h                       | 1,440     |  |  |  |  |  |  |
| CONSUMABLES                                             |           |  |  |  |  |  |  |
| As-Received Coal Feed, lb/h                             | 397,706   |  |  |  |  |  |  |
| Thermal Input <sup>1</sup> , kWt                        | 1,451,124 |  |  |  |  |  |  |
| Gasifier Oxygen (95% pure), lb/h                        | 378,897   |  |  |  |  |  |  |
| Claus Plant Oxygen (95% pure), lb/h                     | 4,926     |  |  |  |  |  |  |
| Water (for slurry), lb/h                                | 182,455   |  |  |  |  |  |  |

Table 3-1GE Energy Radiant-Convective IGCC Plant Performance Summary100 Percent Load

<sup>1</sup> HHV of As-Fed Pittsburgh 6 % Moisture Coal is 12,450 Btu/lb

#### 3.1 HEAT AND MATERIAL BALANCE

The heat and material balance for the IGCC plant is based on General Electric's estimate for the syngas fuel requirements for two 7FA gas turbines. The pressurized entrained-flow gasifier uses a coal/water slurry and oxygen to produce a medium heating value fuel gas.

The gasifier vessel is a refractory-lined, high-pressure combustion chamber. Coal slurry is transferred from the slurry storage tank to the gasifier with a high-pressure pump. At the top of the gasifier vessel is located a combination fuel injector through which coal slurry feedstock and oxidant (oxygen) are fed. The coal slurry and the oxygen feeds react in the gasifier at about 815 psia at a high temperature (in excess of 2500°F) to produce syngas. Hot syngas and molten solids from the reactor flow downward into a radiant cooler where the syngas is cooled and the ash solidifies. Raw syngas then flows to a convective cooler and into a syngas scrubber for removal of entrained solids.

The gas goes through a series of gas coolers and cleanup processes including a COS hydrolysis reactor, a carbon bed mercury removal system, and an AGR plant. Slag captured by the syngas scrubber is recovered in a slag recovery unit. Regeneration gas from the AGR plant is fed to a Claus plant, where elemental sulfur is recovered.

This plant utilizes a combined cycle for combustion of the syngas from the gasifier to generate electric power. Humidification of the syngas and nitrogen dilution aids in minimizing formation of  $NO_X$  during combustion in the gas turbine burner section. A Brayton cycle using air and combustion products as working fluid is used in conjunction with a conventional subcritical steam Rankine cycle. The two cycles are coupled by generation of steam in the heat recovery steam generator (HRSG), by feedwater heating in the HRSG, and by heat recovery from the IGCC process.

Figure 3-1 is a modified block flow diagram for the overall plant with individual streams identified. Table 3-2 follows the figure with detailed composition and state points for the numbered streams.


Figure 3-1 GE Energy Radiant-Convective IGCC Case – Block Flow Diagram

|                                      | 1         | 2       | 3      | 4       | 5       | 6 <sup>A</sup> | 7       | 8       | 9       | 10      |
|--------------------------------------|-----------|---------|--------|---------|---------|----------------|---------|---------|---------|---------|
| V-L Mole Fraction                    |           |         |        |         |         |                |         |         |         |         |
| Ar                                   | 0.0094    | 0.0111  | 0.0360 | 0.0000  | 0.0360  | 0.0000         | 0.0000  | 0.0120  | 0.0040  | 0.0105  |
| CH <sub>4</sub>                      | 0.0000    | 0.0000  | 0.0000 | 0.0000  | 0.0000  | 0.0000         | 0.0000  | 0.0007  | 0.0002  | 0.0006  |
| CO                                   | 0.0000    | 0.0000  | 0.0000 | 0.0000  | 0.0000  | 0.0000         | 0.0000  | 0.4618  | 0.1140  | 0.4033  |
| CO <sub>2</sub>                      | 0.0003    | 0.0023  | 0.0000 | 0.0000  | 0.0000  | 0.0000         | 0.0000  | 0.1340  | 0.4753  | 0.1170  |
| COS                                  | 0.0000    | 0.0000  | 0.0000 | 0.0000  | 0.0000  | 0.0000         | 0.0000  | 0.0000  | 0.0000  | 0.0000  |
| H <sub>2</sub>                       | 0.0000    | 0.0000  | 0.0000 | 0.0000  | 0.0000  | 0.0000         | 0.0000  | 0.3812  | 0.0606  | 0.3329  |
| H <sub>2</sub> O                     | 0.0104    | 0.0733  | 0.0000 | 0.0000  | 0.0000  | 1.0000         | 0.0000  | 0.0012  | 0.0000  | 0.1277  |
| H <sub>2</sub> S                     | 0.0000    | 0.0000  | 0.0000 | 0.0000  | 0.0000  | 0.0000         | 0.0000  | 0.0000  | 0.0001  | 0.0000  |
| N <sub>2</sub>                       | 0.7722    | 0.9133  | 0.0140 | 1.0000  | 0.0140  | 0.0000         | 0.0000  | 0.0090  | 0.3457  | 0.0079  |
| NH <sub>3</sub>                      | 0.0000    | 0.0000  | 0.0000 | 0.0000  | 0.0000  | 0.0000         | 0.0000  | 0.0000  | 0.0000  | 0.0000  |
| 0 <sub>2</sub>                       | 0.2077    | 0.0000  | 0.9500 | 0.0000  | 0.9500  | 0.0000         | 0.0000  | 0.0000  | 0.0000  | 0.0000  |
| SO <sub>2</sub>                      | 0.0000    | 0.0000  | 0.0000 | 0.0000  | 0.0000  | 0.0000         | 0.0000  | 0.0000  | 0.0000  | 0.0000  |
| Total                                | 1.0000    | 1.0000  | 1.0000 | 1.0000  | 1.0000  | 1.0000         | 0.0000  | 1.0000  | 1.0000  | 1.0000  |
|                                      |           |         |        |         |         |                |         |         |         |         |
| V-L Flowrate (lb <sub>mol</sub> /hr) | 38,516    | 7,753   | 153    | 34,900  | 11,756  | 10,128         | 0       | 34,505  | 3,239   | 39,508  |
| V-L Flowrate (lb/hr)                 | 1,111,350 | 212,814 | 4,926  | 977,663 | 378,887 | 182,455        | 0       | 702,757 | 110,414 | 792,888 |
| Solids Flowrate (lb/hr)              | 0         | 0       | 0      | 0       | 0       | 397,706        | 45,047  | 0       | 0       | 0       |
|                                      |           |         |        |         |         |                |         |         |         |         |
| Temperature (°F)                     | 195       | 57      | 90     | 453     | 280     | 59             | 2,500   | 112     | 116     | 520     |
| Pressure (psia)                      | 190.0     | 16.4    | 30.0   | 250.0   | 1,024.7 | 14.4           | 1,050.0 | 701.7   | 375.0   | 688.0   |
| Density (lb/ft <sup>3</sup> )        | 0.780     | 0.086   | 0.164  | 0.715   | 4.161   | 62.622         | 177.478 | 2.329   | 2.069   | 1.313   |
| Molecular Weight                     | 28.854    | 27.450  | 32.229 | 28.013  | 32.229  | 18.015         | -       | 20.367  | 34.086  | 20.069  |

Table 3-2GE Energy Radiant-Convective IGCC Stream Tables (page 1 of 2)

A - Solids flowrate includes dry coal; V-L flowrate includes slurry water and water from coal

|                                      | 11      | 12     | 13      | 14     | 15        | 16      | 17        | 18        |
|--------------------------------------|---------|--------|---------|--------|-----------|---------|-----------|-----------|
| V-L Mole Fraction                    |         |        |         |        |           |         |           |           |
| Ar                                   | 0.0100  | 0.0000 | 0.0000  | 0.0116 | 0.0094    | 0.0094  | 0.0088    | 0.0088    |
| CH <sub>4</sub>                      | 0.0006  | 0.0000 | 0.0000  | 0.0000 | 0.0000    | 0.0000  | 0.0000    | 0.0000    |
| CO                                   | 0.3814  | 0.0000 | 0.0000  | 0.1409 | 0.0000    | 0.0000  | 0.0000    | 0.0000    |
| CO <sub>2</sub>                      | 0.1441  | 0.2938 | 0.0000  | 0.3411 | 0.0003    | 0.0003  | 0.0832    | 0.0832    |
| COS                                  | 0.0000  | 0.0005 | 0.0000  | 0.0008 | 0.0000    | 0.0000  | 0.0000    | 0.0000    |
| H <sub>2</sub>                       | 0.3123  | 0.0000 | 0.0000  | 0.0852 | 0.0000    | 0.0000  | 0.0000    | 0.0000    |
| H <sub>2</sub> O                     | 0.1180  | 0.0262 | 0.0000  | 0.0041 | 0.0104    | 0.0104  | 0.0760    | 0.0760    |
| H <sub>2</sub> S                     | 0.0000  | 0.4549 | 0.0000  | 0.0117 | 0.0000    | 0.0000  | 0.0000    | 0.0000    |
| N <sub>2</sub>                       | 0.0335  | 0.2245 | 0.0000  | 0.4044 | 0.7722    | 0.7722  | 0.7273    | 0.7273    |
| NH <sub>3</sub>                      | 0.0000  | 0.0000 | 0.0000  | 0.0000 | 0.0000    | 0.0000  | 0.0000    | 0.0000    |
| O <sub>2</sub>                       | 0.0000  | 0.0000 | 0.0000  | 0.0000 | 0.2077    | 0.2077  | 0.1047    | 0.1047    |
| SO <sub>2</sub>                      | 0.0000  | 0.0000 | 0.0000  | 0.0000 | 0.0000    | 0.0000  | 0.0000    | 0.0000    |
| Total                                | 1.0000  | 1.0000 | 0.0000  | 1.0000 | 1.0000    | 1.0000  | 1.0000    | 1.0000    |
|                                      |         |        |         |        |           |         |           |           |
| V-L Flowrate (lb <sub>mol</sub> /hr) | 42,747  | 784    | 44      | 477    | 224,404   | 16,044  | 271,179   | 271,175   |
| V-L Flowrate (lb/hr)                 | 903,302 | 27,614 | 11,293  | 15,019 | 6,475,020 | 462,940 | 7,893,050 | 7,893,050 |
| Solids Flowrate (lb/hr)              | 0       | 0      | 0       | 0      | 0         | 0       | 0         | 0         |
|                                      |         |        |         |        |           |         |           |           |
| Temperature (°F)                     | 535     | 120    | 353     | 120    | 59        | 724     | 1,080     | 237       |
| Pressure (psia)                      | 370.0   | 30.0   | 23.6    | 369.5  | 14.7      | 225.6   | 14.8      | 14.8      |
| Density (lb/ft <sup>3</sup> )        | 0.732   | 0.170  | 329.568 | 1.868  | 0.076     | 0.512   | 0.026     | 0.058     |
| Molecular Weight                     | 21.131  | 35.233 | 256.528 | 31.455 | 28.854    | 28.854  | 29.106    | 29.107    |

Table 3-2 (cont'd)GE Energy Radiant-Convective IGCC Stream Tables (page 2 of 2)

### 3.2 EMISSIONS PERFORMANCE

The operation of the combined cycle unit in conjunction with oxygen-blown GE Energy IGCC technology is projected to result in very low levels of emissions of  $NO_X$ ,  $SO_2$ , and particulate. A salable byproduct is produced in the form of elemental sulfur. A summary of the plant emissions is presented in Table 3-3.

|                 | lb/106 Btu | tons/year<br>80% capacity | lb/MWh |  |  |
|-----------------|------------|---------------------------|--------|--|--|
| SO <sub>2</sub> | 0.007      | 116                       | 0.058  |  |  |
| NO <sub>X</sub> | 0.022      | 384                       | 0.192  |  |  |
| Particulates    | 0.006      | 98                        | 0.049  |  |  |
| CO <sub>2</sub> | 200        | 3,478,000                 | 1,738  |  |  |

Table 3-3Airborne EmissionsIGCC, Oxygen-Blown GE Energy Radiant-Convective

The low level of  $SO_2$  in the plant emissions is achieved by capture of the sulfur in the gas by the Selexol AGR process. The AGR process removes over 99 percent of the sulfur compounds in the fuel gas down to a level of 15 ppm. This results in a concentration in the flue gas of less than 2 ppm. The H<sub>2</sub>S-rich regeneration gas from the AGR system is fed to a Claus plant, producing elemental sulfur. The Claus tail gas, after hydrogenation, is recycled back to the AGR unit.

 $NO_X$  emissions are limited to 5 ppmvd in the flue gas (normalized to 15 percent  $O_2$ ) by the combined use of syngas dilution (humidification along with nitrogen), and combustion turbine firing based on the DOE/GE development programs to lower  $NO_X$  emissions to single digits. Ammonia is removed with process condensate prior to the low-temperature AGR process, which helps lower  $NO_X$  levels as well. A selective catalytic reduction (SCR) process is not required.

Particulate discharge to the atmosphere is limited to extremely low values by the use of the syngas scrubber and the gas-washing effect of the AGR absorber.

 $CO_2$  emissions are equal to those of other coal-burning facilities on an intensive basis (1b/10<sup>6</sup> Btu), since a similar fuel is used. However, total  $CO_2$  emissions are lower for a plant with this capacity due to the relatively high thermal efficiency.

### 3.3 WATER BALANCES

Figure 3-2 shows the water flows through the entire plant in gallons per minute. All the water is accounted for including the water lost in chemical reactions or gained in the combustion of hydrogen in the syngas. Table 3-4 shows an overall water balance for the entire plant and Table 3-5 shows the water loss by major function. The cooling water system is by far the largest

water consumer accounting for over 76 percent of the water lost followed by 17 percent of the water lost in the flue gas. The slurry fed GE Energy gasification process accounts for approximately 6 percent of the losses.

|    | Water In                                  |            | Water Out |                                  |            |  |  |
|----|-------------------------------------------|------------|-----------|----------------------------------|------------|--|--|
| No | Location                                  | Flow (gpm) | No        | Location                         | Flow (gpm) |  |  |
| 1  | Moisture in coal                          | 47.7       | Α         | Water Lost in Gasification Shift | 159.2      |  |  |
| С  | Syngas Combustion of H <sub>2</sub> in GT | 482.7      | 6         | Ash Handling Blowdown            | 79.9       |  |  |
| 22 | Combustion air for GT                     | 78.1       | 7         | Water with Slag                  | 31.5       |  |  |
| 33 | Raw Water                                 | 3,691      | В         | Water loss in COS Hydrolysis     | 0.3        |  |  |
|    | Moisture in Air to ASU                    | 20.5       | 24        | GT Flue gas                      | 742.5      |  |  |
|    |                                           |            | 27        | Water Treatment Effluent         | 4.7        |  |  |
|    |                                           |            | 37        | Cooling tower blowdown           | 820.0      |  |  |
|    |                                           |            | 36        | Cooling tower evaporation        | 2,461      |  |  |
|    |                                           |            |           | Moisture in ASU Vent             | 20.5       |  |  |
|    |                                           | 4,320      |           |                                  | 4,320      |  |  |

Table 3-4GE Energy Radiant-Convective IGCC Overall Water Balance

Table 3-5GE Energy Radiant-Convective IGCC Water Loss by Function

| Gasification losses              | gpm   | gal/MWh |
|----------------------------------|-------|---------|
| Water Lost in Gasification Shift | 159.2 | 16.7    |
| Ash Handling Blowdown            | 79.9  | 8.4     |
| Water with Slag                  | 31.5  | 3.3     |
| Water loss in COS Hydrolysis     | 0.2   | 0.0     |
| Water Treatment Effluent         | 4.7   | 0.5     |
| Total                            | 275.6 | 28.9    |
| Flue gas losses                  |       |         |
| GT Flue gas                      | 742.5 | 78.0    |
| Total                            | 742.5 | 78.0    |
| Cooling water losses             |       |         |
| Cooling tower blowdown           | 820.0 | 86.1    |
| Cooling tower evaporation        | 2,461 | 258.5   |
| Total                            | 3,281 | 344.6   |
| Grand Total                      | 4,299 | 451.6   |

MAKE-UP WATER -18-[190.2] [181.7] SYNGAS EXPANDER HUMIDIFIER -20 17 [1185] - 19 [1.6] **16** TO SOUR WATER STRIPPER 4 . . . [10.1] 9 [681.6] COAL [197.7] [13.6] [198.0] COAL SLURRY [251.9] [15.0] GAS COOLING SELEXOL UNIT CLAUS PLANT SLURRY MIXER COS WATER -1-- 25 --3--8-.13-GASIFIER 12 15 & KNOCKOUT WASH HYDROLYSIS [47.7] [412.4] WATER B LOST TO HYDROLYSIS WATER LOST TO SHIFT [159.2] -2-14 [182.6] [364.7] [0.3] [159.2] SLURRY [0.1] WATER MAKE-UP WATER -<u>32</u>---SOUR WATER -11--30-BLOWDOWN MAKE-UP STRIPPER ASH HANDLING TO SOUR WATER STRIPPER [246.7] -6--> -5-WATER [54.0] -4-[110.1] [79.9] [33.7] BLOWDOWN 19 [10.1] [151.7] -31-7 [31.5] 10 [213.0] WATER TREATMENT SLAG (WET) [42.5] SLURRY MAKEUP -26 WATER TO ASH HANDLING MAKEUP [2461] EVAPORATION 26 [4.7] WATER [0.0] [3229] MAKEUP WATER EFFLUENT 30 36 - 34 [151.7] 4 [110.1] 5 BLOWDOWN **CWS** RAW WATER 33 -38 COOLING CONDENSATE WATER TREATING & DEAERATION WATER [9.9] CWR CONDENSATE SYSTEM [3691] 37 [820] MAKEUP WATER TO HUMIDIFIER BFW 18 BLOWDOWN [9.9] MAKEUP WATER [190.2] 35

Figure 3-2 GE Energy Radiant-Convective IGCC Case – Block Flow Diagram – Water Flows in Gallons per Minute



Table 3-6 shows the water balance around the gasification island.

 Table 3-6

 GE Energy Radiant-Convective IGCC Water Balance Around Gasification Island

|    | Water In                  |            | Water Out |                                  |            |  |  |
|----|---------------------------|------------|-----------|----------------------------------|------------|--|--|
| No | Location                  | Flow (gpm) | No        | Location                         | Flow (gpm) |  |  |
| 1  | Moisture in coal          | 47.7       | Α         | Water Lost in Gasification Shift | 159.2      |  |  |
| 4  | Slurry Makeup Water       | 151.7      | 6         | Ash Handling Blowdown            | 79.9       |  |  |
| 5  | Raw water to ash handling | 110.1      | 7         | Water with Slag                  | 31.5       |  |  |
|    |                           |            | В         | Water loss in COS Hydrolysis     | 0.3        |  |  |
|    |                           |            | 16        | Syngas to Humidification         | 1.53       |  |  |
|    |                           |            | 31        | Sour water blowdown              | 23.7       |  |  |
|    |                           |            | 29        | Tail Gas Condensate              | 13.5       |  |  |
|    |                           | 310        |           |                                  | 310        |  |  |

Table 3-7 shows the water balance around the power island. A major portion of the water in the flue gas is from the combustion of hydrogen in the syngas produced during gasification, shift and COS hydrolysis.

 Table 3-7

 GE Energy Radiant-Convective IGCC Water Balance Around Power Island

|    | Water In                                  |            | Water Out |                         |            |  |
|----|-------------------------------------------|------------|-----------|-------------------------|------------|--|
| No | Location                                  | Flow (gpm) | No        | Location                | Flow (gpm) |  |
| 16 | Syngas to Humidification                  | 1.5        | 19        | Humidification blowdown | 10.1       |  |
| 18 | Humidifier makeup water                   | 190.2      | 23        | GT Flue gas             | 742.5      |  |
| 21 | GT Diluent Steam                          | 0          |           | _                       |            |  |
| С  | Syngas Combustion of H <sub>2</sub> in GT | 482.7      |           |                         |            |  |
| 22 | Combustion air for GT                     | 78.1       |           |                         |            |  |
|    |                                           | 753        |           |                         | 753        |  |

Table 3-8 shows the water balance around the cooling water system. The wet cooling tower accounts for the majority of the water used in this section.

 Table 3-8

 GE Energy Radiant-Convective IGCC Water Balance Around Cooling Water System

|    | Water In                   |            | Water Out |                           |            |  |  |
|----|----------------------------|------------|-----------|---------------------------|------------|--|--|
| No | Location                   | Flow (gpm) | No        | Location                  | Flow (gpm) |  |  |
| 33 | Raw Water                  | 3,691      | 5         | Raw water to ash handling | 110.1      |  |  |
| 26 | From Waste Water treatment | 42.5       | 21        | GT Diluent Steam          | 0          |  |  |
|    |                            |            | 18        | Humidifier makeup water   | 190.2      |  |  |
|    |                            |            | 37        | Cooling tower blowdown    | 820.0      |  |  |
|    |                            |            | 36        | Cooling tower evaporation | 2,461      |  |  |
|    |                            |            | 4         | Slurry Makeup Water       | 151.7      |  |  |
|    |                            | 3,733      |           |                           | 3,733      |  |  |

### 3.4 RAW WATER USAGE

The raw water usage as calculated in this study represents the total amount of water to be supplied from local water resources to provide for the needs of the plant. The amount differs from the total water losses, or the totals appearing in the Overall Water Balance. The difference is attributable to water contributed to the balance via humid air intake to the process, water content of the fuel, and water produced in gasification/combustion. For example, the raw water usage to the cooling tower is calculated as the raw water makeup delivered directly to the cooling tower while the cooling tower loss calculation includes water recycled from other sources. The raw water usage for each power plant can be the determining factor for siting and permitting, as it identifies the impact of the plant on local water availability. Table 3-9 shows the raw water for the plant and the usage through branch streams required to supplement process losses and flue gas losses.

| Water In |           |       |       | Water Usage |                                |       |       |  |  |
|----------|-----------|-------|-------|-------------|--------------------------------|-------|-------|--|--|
| No       | Flow gal/ |       |       | Flow        | gal/                           |       |       |  |  |
|          | Location  | (gpm) | MWh   | NU          | Location                       | (gpm) | MWh   |  |  |
| 33       | Raw Water | 3,691 | 387.6 | 4           | Makeup to Slurry System        | 151.7 | 15.9  |  |  |
|          |           |       |       | 5           | 5 Makeup water to ash handling |       | 11.6  |  |  |
|          |           |       |       | 18          | Makeup to Humidifier           | 190.2 | 20.0  |  |  |
|          |           |       |       | 34          | Makeup to Cooling Tower        | 3,229 | 339.1 |  |  |
|          |           |       |       | 35          | Makeup to Condenser            | 9.9   | 1.0   |  |  |
|          |           | 3,691 | 387.6 |             |                                | 3,691 | 387.6 |  |  |

Table 3-9GE Energy Radiant-Convective IGCC Raw Water Usage

### 4. WATER LOSS ANALYSIS OF THE GE ENERGY QUENCH IGCC PLANT

The study design goal was to track the water flows and usages for all the major sections of the plant. Since essentially all fuel-bound hydrogen ends up as water, hydrogen was also tracked for each plant and major process area. An overall water balance and a water balance for each major plant section was then generated.

This IGCC plant design is based on the GE Energy technology, which utilizes a pressurized entrained-flow, oxygen-blown gasification process. The plant configuration is based on the quench gasifier option operating at approximately 965 psia.

The power generation technology is based on selection of two gas turbines derived from the General Electric 7FA machine. The plant is configured with two operating gasifiers including processes to progressively cool and clean the gas, making it suitable for combustion in the gas turbines. The resulting plant produces a net output of 522 MWe at a net efficiency of 35.4 percent on an HHV basis. Performance is based on the properties of Pittsburgh No. 8 coal, described in the plant design basis. Overall performance for the entire plant is summarized in Table 4-1, which includes auxiliary power requirements.

| POWER SUMMARY (Gross Power at Generator Terminals, kWe) |           |  |  |  |  |
|---------------------------------------------------------|-----------|--|--|--|--|
| Gas Turbine Power                                       | 394,000   |  |  |  |  |
| Sweet Gas Expander Power                                | 13,570    |  |  |  |  |
| Steam Turbine                                           | 223,090   |  |  |  |  |
| Total                                                   | 630,660   |  |  |  |  |
| AUXILIARY LOAD SUMMARY, kWe                             |           |  |  |  |  |
| Coal Handling                                           | 520       |  |  |  |  |
| Coal Milling                                            | 1,070     |  |  |  |  |
| Coal Slurry Pumps                                       | 370       |  |  |  |  |
| Slag Handling and Dewatering                            | 290       |  |  |  |  |
| Air Separation Unit Auxiliaries                         | 53,120    |  |  |  |  |
| Oxygen Compressor                                       | 15,530    |  |  |  |  |
| Main Nitrogen Compressor                                | 18,620    |  |  |  |  |
| Nitrogen Boost Compressor                               | 900       |  |  |  |  |
| Claus Tail Gas Recycle Compressor                       | 2,030     |  |  |  |  |
| HP Boiler Feedwater Pumps                               | 2,750     |  |  |  |  |
| IP Boiler Feedwater Pumps                               | 200       |  |  |  |  |
| LP Boiler Feedwater Pumps                               | 650       |  |  |  |  |
| Scrubber Pumps                                          | 100       |  |  |  |  |
| Circulating Water Pumps                                 | 3,250     |  |  |  |  |
| Cooling Tower Fans                                      | 1,950     |  |  |  |  |
| Condensate Pump                                         | 310       |  |  |  |  |
| Selexol Unit Auxiliaries                                | 2,720     |  |  |  |  |
| Gas Turbine Auxiliaries                                 | 800       |  |  |  |  |
| Steam Turbine Auxiliaries                               | 400       |  |  |  |  |
| Claus Plant Auxiliaries                                 | 200       |  |  |  |  |
| Miscellaneous Balance of Plant                          | 1,000     |  |  |  |  |
| Transformer Loss                                        | 1,600     |  |  |  |  |
| TOTAL AUXILIARIES, kWe                                  | 108,380   |  |  |  |  |
| Net Power, kWe                                          | 522,280   |  |  |  |  |
| Net Plant Efficiency, % HHV                             | 35.5%     |  |  |  |  |
| Net Heat Rate, Btu/kWh (HHV)                            | 9,625     |  |  |  |  |
| CONDENSER COOLING DUTY, 106 Btu/h                       | 1,419     |  |  |  |  |
| CONSUMABLES                                             |           |  |  |  |  |
| As-Received Coal Feed, lb/h                             | 403,754   |  |  |  |  |
| Thermal Input <sup>1</sup> , kWt                        | 1,473,192 |  |  |  |  |
| Gasifier Oxygen (95% pure), lb/h                        | 384,649   |  |  |  |  |
| Claus Plant Oxygen (95% pure), lb/h                     | 8,524     |  |  |  |  |
| Water (for slurry), lb/h                                | 185,230   |  |  |  |  |

Table 4-1GE Energy Quench IGCC Plant Performance Summary100 Percent Load

<sup>1</sup> HHV of As-Fed Pittsburgh 6 % Moisture Coal is 12,450 Btu/lb

### 4.1 HEAT AND MATERIAL BALANCE

The heat and material balance for the IGCC plant is based on General Electric's estimate for the syngas fuel requirements for two 7FA gas turbines. The pressurized entrained-flow gasifier uses a coal/water slurry and oxygen to produce a medium heating value fuel gas.

The gasifier vessel is a refractory-lined, high-pressure combustion chamber. Coal slurry is transferred from the slurry storage tank to the gasifier with a high-pressure pump. At the top of the gasifier vessel is located a combination fuel injector through which coal slurry feedstock and oxidant (oxygen) are fed. The coal slurry and the oxygen feeds react in the gasifier at about 965 psia at a high temperature (in excess of 2500°F) to produce syngas. Hot syngas and molten solids from the reactor flow downward into a water-filled quench chamber where the syngas is cooled and the ash solidifies. Raw syngas then flows to the syngas scrubber for removal of entrained solids.

The gas goes through a series of gas coolers and cleanup processes including a COS hydrolysis reactor, a carbon bed mercury removal system, and an AGR plant. Slag captured by the syngas scrubber is recovered in a slag recovery unit. Regeneration gas from the AGR plant is fed to a Claus plant, where elemental sulfur is recovered.

This plant utilizes a combined cycle for combustion of the syngas from the gasifier to generate electric power. Humidification of the syngas and nitrogen dilution aids in minimizing formation of  $NO_X$  during combustion in the gas turbine burner section. A Brayton cycle using air and combustion products as working fluid is used in conjunction with a conventional subcritical steam Rankine cycle. The two cycles are coupled by generation of steam in the heat recovery steam generator (HRSG), by feedwater heating in the HRSG, and by heat recovery from the IGCC process.

Figure 4-1 is a modified block flow diagram for the overall plant with individual streams identified. Table 4-2 follows the figure with detailed composition and state points for the numbered streams.



Figure 4-1 GE Energy Quench IGCC Case – Block Flow Diagram

|                                      | 1         | 2       | 3      | 4       | 5       | 6 <sup>A</sup> | 7       | 8       | 9       | 10      |
|--------------------------------------|-----------|---------|--------|---------|---------|----------------|---------|---------|---------|---------|
| V-L Mole Fraction                    |           |         |        |         |         |                |         |         |         |         |
| Ar                                   | 0.0094    | 0.0072  | 0.0360 | 0.0000  | 0.0360  | 0.0000         | 0.0000  | 0.0121  | 0.0065  | 0.0095  |
| CH <sub>4</sub>                      | 0.0000    | 0.0000  | 0.0000 | 0.0000  | 0.0000  | 0.0000         | 0.0000  | 0.0031  | 0.0008  | 0.0024  |
| CO                                   | 0.0000    | 0.0000  | 0.0000 | 0.0000  | 0.0000  | 0.0000         | 0.0000  | 0.4519  | 0.1673  | 0.3539  |
| CO <sub>2</sub>                      | 0.0003    | 0.0014  | 0.0000 | 0.0000  | 0.0000  | 0.0000         | 0.0000  | 0.1356  | 0.4867  | 0.1062  |
| COS                                  | 0.0000    | 0.0000  | 0.0000 | 0.0000  | 0.0000  | 0.0000         | 0.0000  | 0.0000  | 0.0000  | 0.0000  |
| H <sub>2</sub>                       | 0.0000    | 0.0000  | 0.0000 | 0.0000  | 0.0000  | 0.0000         | 0.0000  | 0.3881  | 0.0509  | 0.3040  |
| H <sub>2</sub> O                     | 0.0104    | 0.0438  | 0.0000 | 0.0000  | 0.0000  | 1.0000         | 0.0000  | 0.0011  | 0.0000  | 0.2175  |
| H <sub>2</sub> S                     | 0.0000    | 0.0000  | 0.0000 | 0.0000  | 0.0000  | 0.0000         | 0.0000  | 0.0000  | 0.0001  | 0.0000  |
| N <sub>2</sub>                       | 0.7722    | 0.9476  | 0.0140 | 1.0000  | 0.0140  | 0.0000         | 0.0000  | 0.0082  | 0.2878  | 0.0064  |
| NH <sub>3</sub>                      | 0.0000    | 0.0000  | 0.0000 | 0.0000  | 0.0000  | 0.0000         | 0.0000  | 0.0000  | 0.0000  | 0.0000  |
| O <sub>2</sub>                       | 0.2077    | 0.0000  | 0.9500 | 0.0000  | 0.9500  | 0.0000         | 0.0000  | 0.0000  | 0.0000  | 0.0000  |
| SO <sub>2</sub>                      | 0.0000    | 0.0000  | 0.0000 | 0.0000  | 0.0000  | 0.0000         | 0.0000  | 0.0000  | 0.0000  | 0.0000  |
| Total                                | 1.0000    | 1.0000  | 1.0000 | 1.0000  | 1.0000  | 1.0000         | 0.0000  | 1.0000  | 1.0000  | 1.0000  |
|                                      |           |         |        |         |         |                |         |         |         |         |
| V-L Flowrate (lb <sub>mol</sub> /hr) | 38,252    | 13,285  | 264    | 30,405  | 11,935  | 10,282         | 0       | 34,187  | 4,051   | 43,645  |
| V-L Flowrate (lb/hr)                 | 1,103,740 | 367,770 | 8,524  | 851,741 | 384,649 | 185,230        | 0       | 690,124 | 139,948 | 860,514 |
| Solids Flowrate (lb/hr)              | 0         | 0       | 0      | 0       | 0       | 403,754        | 45,732  | 0       | 0       | 0       |
|                                      |           |         |        | -       | -       | _              | -       | -       |         |         |
| Temperature (°F)                     | 195       | 56      | 90     | 440     | 280     | 59             | 430     | 112     | 116     | 520     |
| Pressure (psia)                      | 190.0     | 16.4    | 30.0   | 250.0   | 1,024.7 | 14.4           | 962.7   | 848.0   | 375.0   | 825.0   |
| Density (lb/ft <sup>3</sup> )        | 0.780     | 0.085   | 0.164  | 0.725   | 4.161   | 62.622         | 177.478 | 2.789   | 2.097   | 1.547   |
| Molecular Weight                     | 28.854    | 27.683  | 32.229 | 28.013  | 32.229  | 18.015         | -       | 20.187  | 34.543  | 19.716  |

Table 4-2GE Energy Quench IGCC Stream Tables (page 1 of 2)

A - Solids flowrate includes dry coal; V-L flowrate includes slurry water and water from coal

|                                      | 11        | 12     | 13      | 14     | 15        | 16      | 17        | 18        |
|--------------------------------------|-----------|--------|---------|--------|-----------|---------|-----------|-----------|
| V-L Mole Fraction                    |           |        |         |        |           |         |           |           |
| Ar                                   | 0.0092    | 0.0000 | 0.0000  | 0.0138 | 0.0094    | 0.0094  | 0.0088    | 0.0089    |
| CH <sub>4</sub>                      | 0.0023    | 0.0000 | 0.0000  | 0.0000 | 0.0000    | 0.0000  | 0.0000    | 0.0000    |
| CO                                   | 0.3381    | 0.0001 | 0.0000  | 0.2808 | 0.0000    | 0.0000  | 0.0000    | 0.0000    |
| CO <sub>2</sub>                      | 0.1385    | 0.3600 | 0.0000  | 0.4777 | 0.0003    | 0.0003  | 0.0848    | 0.0848    |
| COS                                  | 0.0000    | 0.0008 | 0.0000  | 0.0005 | 0.0000    | 0.0000  | 0.0000    | 0.0000    |
| H <sub>2</sub>                       | 0.2825    | 0.0000 | 0.0000  | 0.0360 | 0.0000    | 0.0000  | 0.0000    | 0.0000    |
| H <sub>2</sub> O                     | 0.1991    | 0.0261 | 0.0000  | 0.0040 | 0.0104    | 0.0104  | 0.0938    | 0.0938    |
| H <sub>2</sub> S                     | 0.0000    | 0.3894 | 0.0000  | 0.0073 | 0.0000    | 0.0000  | 0.0000    | 0.0000    |
| N <sub>2</sub>                       | 0.0303    | 0.2237 | 0.0000  | 0.1800 | 0.7722    | 0.7722  | 0.7091    | 0.7091    |
| NH <sub>3</sub>                      | 0.0000    | 0.0000 | 0.0000  | 0.0000 | 0.0000    | 0.0000  | 0.0000    | 0.0000    |
| 0 <sub>2</sub>                       | 0.0000    | 0.0000 | 0.0000  | 0.0000 | 0.2077    | 0.2077  | 0.1034    | 0.1034    |
| SO <sub>2</sub>                      | 0.0000    | 0.0000 | 0.0000  | 0.0000 | 0.0000    | 0.0000  | 0.0000    | 0.0000    |
| Total                                | 1.0000    | 1.0000 | 0.0000  | 1.0000 | 1.0000    | 1.0000  | 1.0000    | 1.0000    |
|                                      |           |        |         |        |           |         |           |           |
| V-L Flowrate (lb <sub>mol</sub> /hr) | 47,696    | 819    | 45      | 1,371  | 224,404   | 17,638  | 270,066   | 270,058   |
| V-L Flowrate (lb/hr)                 | 1,000,460 | 29,415 | 11,618  | 47,863 | 6,475,020 | 508,940 | 7,818,280 | 7,818,280 |
| Solids Flowrate (lb/hr)              | 0         | 0      | 0       | 0      | 0         | 0       | 0         | 0         |
|                                      |           |        |         |        |           |         |           |           |
| Temperature (°F)                     | 535       | 120    | 346     | 120    | 59        | 724     | 1,087     | 250       |
| Pressure (psia)                      | 370.0     | 30.0   | 23.6    | 369.5  | 14.7      | 225.6   | 14.8      | 14.8      |
| Density (lb/ft <sup>3</sup> )        | 0.727     | 0.173  | 330.085 | 2.073  | 0.076     | 0.512   | 0.026     | 0.056     |
| Molecular Weight                     | 20.976    | 35.907 | 256.528 | 34.908 | 28.854    | 28.854  | 28.950    | 28.950    |

Table 4-2 (cont'd)GE Energy Quench IGCC Stream Tables (page 2 of 2)

### 4.2 EMISSIONS PERFORMANCE

The operation of the combined cycle unit in conjunction with oxygen-blown GE Energy IGCC technology is projected to result in very low levels of emissions of  $NO_X$ ,  $SO_2$ , and particulate. A salable byproduct is produced in the form of elemental sulfur. A summary of the plant emissions is presented in Table 4-3.

|                 | Ib/10 <sup>6</sup> Btu | tons/year<br>80% capacity | lb/MWh |
|-----------------|------------------------|---------------------------|--------|
| SO <sub>2</sub> | 0.007                  | 115                       | 0.063  |
| NO <sub>x</sub> | 0.022                  | 387                       | 0.213  |
| Particulates    | 0.006                  | 98                        | 0.053  |
| CO <sub>2</sub> | 200                    | 3,531,000                 | 1,929  |

#### Table 4-3 Airborne Emissions IGCC, Oxygen-Blown GE Energy

The low level of  $SO_2$  in the plant emissions is achieved by capture of the sulfur in the gas by the Selexol AGR process. The AGR process removes over 99 percent of the sulfur compounds in the fuel gas down to a level of 15 ppm. This results in a concentration in the flue gas of less than 2 ppm. The H<sub>2</sub>S-rich regeneration gas from the AGR system is fed to a Claus plant, producing elemental sulfur. The Claus tail gas, after hydrogenation, is recycled back to the AGR unit.

 $NO_X$  emissions are limited to 5 ppmvd in the flue gas (normalized to 15 percent  $O_2$ ) by the combined use of syngas dilution (humidification along with nitrogen), and combustion turbine firing based on the DOE/GE development programs to lower  $NO_X$  emissions to single digits. Ammonia is removed with process condensate prior to the low-temperature AGR process, which helps lower  $NO_X$  levels as well. A selective catalytic reduction (SCR) process is not required.

Particulate discharge to the atmosphere is limited to extremely low values by the use of the syngas scrubber and the gas-washing effect of the AGR absorber.

 $CO_2$  emissions are equal to those of other coal-burning facilities on an intensive basis (1b/10<sup>6</sup> Btu), since a similar fuel is used. However, total  $CO_2$  emissions are lower for a plant with this capacity due to the relatively high thermal efficiency.

### 4.3 WATER BALANCES

Figure 4-2 shows the water flows through the entire plant in gallons per minute. All the water is accounted for including the water lost in chemical reactions or gained in the combustion of hydrogen in the syngas. Table 4-4 shows an overall water balance for the entire plant and Table 4-5 shows the water loss by major function. The cooling water system is by far the largest water consumer accounting for almost 73 percent of the water lost followed by approximately 20

percent of the water lost in the flue gas. The slurry fed GE Energy gasification process accounts for less than 7 percent of the losses.

|    | Water In                                  |            | Water Out |                                  |            |  |  |
|----|-------------------------------------------|------------|-----------|----------------------------------|------------|--|--|
| No | Location                                  | Flow (gpm) | No        | Location                         | Flow (gpm) |  |  |
| 1  | Moisture in coal                          | 48.5       | Α         | Water Lost in Gasification Shift | 158.0      |  |  |
| С  | Syngas Combustion of H <sub>2</sub> in GT | 493.1      | 6         | Ash Handling Blowdown            | 81.1       |  |  |
| 22 | Combustion air for GT                     | 77.5       | 7         | Water with Slag                  | 32.0       |  |  |
| 33 | Raw Water                                 | 3,824      | В         | Water loss in COS Hydrolysis     | 0.5        |  |  |
|    | Moisture in Air to ASU                    | 21.0       | 24        | GT Flue gas                      | 912.6      |  |  |
|    |                                           |            | 27        | Water Treatment Effluent         | 22.2       |  |  |
|    |                                           |            | 37        | Cooling tower blowdown           | 808.8      |  |  |
|    |                                           |            | 36        | Cooling tower evaporation        | 2,428      |  |  |
|    |                                           |            |           | Moisture in ASU Vent             | 21.0       |  |  |
|    |                                           | 4,464      |           |                                  | 4,464      |  |  |

Table 4-4GE Energy Quench IGCC Overall Water Balance

| Table 4-5                                    |
|----------------------------------------------|
| GE Energy Quench IGCC Water Loss by Function |

| Gasification losses              | gpm   | gal/MWh |
|----------------------------------|-------|---------|
| Water Lost in Gasification Shift | 158.0 | 18.2    |
| Ash Handling Blowdown            | 81.1  | 9.3     |
| Water with Slag                  | 32.0  | 3.7     |
| Water loss in COS Hydrolysis     | 0.5   | 0.1     |
| Water Treatment Effluent         | 22.2  | 2.5     |
| Total                            | 293.7 | 33.7    |
| Flue gas losses                  |       |         |
| GT Flue gas                      | 912.6 | 104.8   |
| Total                            | 912.6 | 104.8   |
| Cooling water losses             |       |         |
| Cooling tower blowdown           | 808.8 | 92.9    |
| Cooling tower evaporation        | 2,428 | 278.9   |
| Total                            | 3,236 | 371.8   |
| Grand Total                      | 4,443 | 510.4   |



Figure 4-2 GE Energy Quench IGCC Case – Block Flow Diagram – Water Flows in Gallons per Minute

Table 4-6 shows the water balance around the gasification island.

| Table 4-6                                                      |
|----------------------------------------------------------------|
| GE Energy Quench IGCC Water Balance Around Gasification Island |

|    | Water In                  |            | Water Out |                                  |            |  |
|----|---------------------------|------------|-----------|----------------------------------|------------|--|
| No | Location                  | Flow (gpm) | No        | Location                         | Flow (gpm) |  |
| 1  | Moisture in coal          | 48.5       | Α         | Water Lost in Gasification Shift | 158.0      |  |
| 4  | Slurry Makeup Water       | 257.3      | 6         | Ash Handling Blowdown            | 81.1       |  |
| 5  | Raw water to ash handling | 103.7      | 7         | Water with Slag                  | 32.0       |  |
| 10 | Quench Makeup Water       | 56.0       | В         | Water loss in COS Hydrolysis     | 0.5        |  |
| 19 | From Humidifier Blowdown  | 28.1       | 16        | Syngas to Humidification         | 1.3        |  |
|    |                           |            | 31        | Sour water blowdown              | 201.9      |  |
|    |                           |            | 21        | Syngas to GT                     | 0          |  |
|    |                           |            | 29        | Tail Gas Condensate              | 19.7       |  |
|    |                           | 494        |           |                                  | 494        |  |

Table 4-7 shows the water balance around the power island. A major portion of the water in the flue gas is from the combustion of hydrogen in the syngas produced during gasification, shift and COS hydrolysis.

Table 4-7GE Energy Quench IGCC Water Balance Around Power Island

|    | Water In                                  |            | Water Out |                         |            |  |
|----|-------------------------------------------|------------|-----------|-------------------------|------------|--|
| No | Location                                  | Flow (gpm) | No        | Location                | Flow (gpm) |  |
| 16 | Syngas to Humidification                  | 1.3        | 19        | Humidification blowdown | 28.1       |  |
| 18 | Humidifier makeup water                   | 368.7      | 23        | GT Flue gas             | 912.6      |  |
| 21 | GT Diluent Steam                          | 0          |           |                         |            |  |
| С  | Syngas Combustion of H <sub>2</sub> in GT | 493.1      |           |                         |            |  |
| 22 | Combustion air for GT                     | 77.5       |           |                         |            |  |
|    |                                           | 941        |           |                         | 941        |  |

Table 4-8 shows the water balance around the cooling water system. The wet cooling tower accounts for the majority of the water used in this section.

Table 4-8GE Energy Quench IGCC Water Balance Around Cooling Water System

|    | Water In             |            | Water Out |                           |            |  |  |
|----|----------------------|------------|-----------|---------------------------|------------|--|--|
| No | Location             | Flow (gpm) | No        | Location                  | Flow (gpm) |  |  |
| 33 | Raw Water            | 3,823      | 5         | Raw water to ash handling | 103.7      |  |  |
| 26 | From Water treatment | 199.4      | 21        | GT Diluent Steam          | 0          |  |  |
|    |                      |            | 18        | Humidifier makeup water   | 368.7      |  |  |
|    |                      |            | 37        | Cooling tower blowdown    | 808.8      |  |  |
|    |                      |            | 36        | Cooling tower evaporation | 2,428      |  |  |
|    |                      |            | 4         | Slurry Makeup Water       | 257.3      |  |  |
|    |                      |            | 10        | Quench Makeup Water       | 56.0       |  |  |
|    |                      | 4,022      |           |                           | 4,022      |  |  |

### 4.4 RAW WATER USAGE

The raw water usage as calculated in this study represents the total amount of water to be supplied from local water resources to provide for the needs of the plant. The amount differs from the total water losses, or the totals appearing in the Overall Water Balance. The difference is attributable to water contributed to the balance via humid air intake to the process, water content of the fuel, and water produced in gasification/combustion. For example, the raw water usage to the cooling tower is calculated as the raw water makeup delivered directly to the cooling tower while the cooling tower loss calculation includes water recycled from other sources. The raw water usage for each power plant can be the determining factor for siting and permitting, as it identifies the impact of the plant on local water availability. Table 4-9 shows the raw water for the plant and the usage through branch streams required to supplement process losses and flue gas losses.

| Water In |           |               |             | Water Usage |                              |               |             |  |  |
|----------|-----------|---------------|-------------|-------------|------------------------------|---------------|-------------|--|--|
| No       | Location  | Flow<br>(apm) | gal/<br>MWh | No          | Location                     | Flow<br>(apm) | gal/<br>MWh |  |  |
| 33       | Raw Water | 3,823         | 439.2       | 4           | Makeup to Slurry System      | 257.3         | 29.6        |  |  |
|          |           |               |             | 5           | Makeup water to ash handling | 103.7         | 11.9        |  |  |
|          |           |               |             | 10          | Makeup to Quench System      | 56.6          | 6.4         |  |  |
|          |           |               |             | 18          | Makeup to Humidifier         | 368.7         | 42.4        |  |  |
|          |           |               |             | 34          | Makeup to Cooling Tower      | 3,023         | 347.2       |  |  |
|          |           |               |             | 35          | Makeup to Condenser          | 14.5          | 1.7         |  |  |
|          |           | 3,823         | 439.2       |             |                              | 3,823         | 439.2       |  |  |

Table 4-9GE Energy Quench IGCC Raw Water Usage

### 5. WATER LOSS ANALYSIS OF THE SHELL IGCC PLANT

The study design goal was to track the water flows and usages for all the major sections of the plant. Since essentially all fuel-bound hydrogen ends up as water, hydrogen was also tracked for each plant and major process area. An overall water balance and a water balance for each major plant section was then generated.

This IGCC plant design is based on the Shell Global Solutions gasification technology, which utilizes a pressurized entrained-flow dry-feed gasifier to meet the syngas fuel requirements for two General Electric 7FA combustion turbines.

The power generation technology is based on selection of a gas turbine derived from the General Electric 7FA machine. The plant is configured with two gasifiers including processes to progressively cool and clean the gas, making it suitable for combustion in the gas turbines. The resulting plant produces a net output of 537 MWe at a net efficiency of 40.1 percent on an HHV basis. Performance is based on the properties of Pittsburgh No. 8 coal, described in the plant design basis. Overall performance for the entire plant is summarized in Table 5-1, which includes auxiliary power requirements.

| POWER SUMMARY (Gross Power at Generator Terminals, kWe) |           |  |  |  |
|---------------------------------------------------------|-----------|--|--|--|
| Gas Turbine Power                                       | 394,000   |  |  |  |
| Steam Turbine                                           | 239,540   |  |  |  |
| Total                                                   | 633,540   |  |  |  |
| AUXILIARY LOAD SUMMARY, kWe                             |           |  |  |  |
| Coal Handling                                           | 450       |  |  |  |
| Coal Milling                                            | 940       |  |  |  |
| Slag Handling                                           | 310       |  |  |  |
| Air Separation Unit Auxiliaries                         | 45,990    |  |  |  |
| Oxygen Compressor                                       | 10,620    |  |  |  |
| Nitrogen Compressor                                     | 23,010    |  |  |  |
| Syngas Recycle Compressor                               | 2,110     |  |  |  |
| Incinerator/Coal Dryer Air Compressor                   | 90        |  |  |  |
| HP Boiler Feedwater Pump                                | 3,200     |  |  |  |
| IP Boiler Feedwater Pump                                | 110       |  |  |  |
| Condensate Pump                                         | 250       |  |  |  |
| Circulating Water Pumps                                 | 2,690     |  |  |  |
| Cooling Tower Fans                                      | 1,640     |  |  |  |
| Scrubber Pumps                                          | 300       |  |  |  |
| Sulfinol Unit Auxiliaries                               | 360       |  |  |  |
| Gas Turbine Auxiliaries                                 | 800       |  |  |  |
| Steam Turbine Auxiliaries                               | 400       |  |  |  |
| Claus Plant/TGTU Auxiliaries                            | 250       |  |  |  |
| Miscellaneous Balance of Plant                          | 1,000     |  |  |  |
| Transformer Loss                                        | 1,550     |  |  |  |
| TOTAL AUXILIARIES, kWe                                  | 96,070    |  |  |  |
| Net Power, kWe                                          | 537,470   |  |  |  |
| Net Plant Efficiency, % HHV                             | 40.1%     |  |  |  |
| Net Heat Rate, Btu/kWh (HHV)                            | 8,503     |  |  |  |
| CONDENSER COOLING DUTY, 106 Btu/h                       | 1,332     |  |  |  |
| CONSUMABLES                                             |           |  |  |  |
| As-Received Coal Feed, lb/h                             | 366,992   |  |  |  |
| Thermal Input <sup>1</sup> , kWt                        | 1,339,057 |  |  |  |
| Gasifier Oxygen (95% pure), lb/h                        | 321,918   |  |  |  |
| Claus Plant Oxygen (95% pure), lb/h                     | 3,824     |  |  |  |

# Table 5-1Shell IGCC Plant Performance Summary100 Percent Load

<sup>1</sup> HHV of as-fed Pittsburgh 6.00% moisture coal is 12,450 Btu/lb

### 5.1 HEAT AND MATERIAL BALANCE

The heat and material balance for the IGCC plant is based on the syngas fuel requirements for two General Electric 7FA gas turbines. The pressurized entrained flow Shell gasifier uses a dry-coal feed and oxygen to produce a medium heating value fuel gas. The syngas produced in the gasifier at about 2700°F and is quenched to around 1650°F by cooled recycled syngas. The syngas passes through a convective cooler and leaves near 450°F. High-pressure saturated steam is generated in the syngas cooler and is joined with the main steam supply.

The gas goes through a series of additional gas coolers and cleanup processes including a filter, scrubber, COS hydrolysis reactor, and a Sulfinol-M AGR plant. Slag captured by the filter and syngas scrubber is recovered in a slag recovery unit. Regeneration gas from the AGR plant is fed to a Claus plant, where elemental sulfur is recovered.

This plant utilizes a combined cycle for combustion of the syngas from the gasifier to generate electric power. Steam and nitrogen addition to the syngas aids in minimizing formation of  $NO_X$  during combustion in the gas turbine burner section. A Brayton cycle using air and combustion products as working fluid is used in conjunction with a conventional subcritical steam Rankine cycle. The two cycles are coupled by generation of steam in the heat recovery steam generator (HRSG), by feedwater heating in the HRSG, and by heat recovery from the IGCC process (convective syngas cooler).

Figure 5-1 is a modified block flow diagram for the overall plant with individual streams identified. Table 5-2 follows the figure with detailed composition and state points for the numbered streams.



Figure 5-1 Shell Gasifier-Based IGCC Case – Block Flow Diagram

|                                      | 1         | 2      | 3      | 4       | 5       | 6      | 7       | 8       | 9       |
|--------------------------------------|-----------|--------|--------|---------|---------|--------|---------|---------|---------|
| V-L Mole Fraction                    |           |        |        |         |         |        |         |         |         |
| Ar                                   | 0.0094    | 0.0258 | 0.0360 | 0.0012  | 0.0360  | 0.0000 | 0.0000  | 0.0113  | 0.0095  |
| CH <sub>4</sub>                      | 0.0000    | 0.0000 | 0.0000 | 0.0000  | 0.0000  | 0.0000 | 0.0000  | 0.0002  | 0.0001  |
| CO                                   | 0.0000    | 0.0000 | 0.0000 | 0.0000  | 0.0000  | 0.0000 | 0.0000  | 0.6356  | 0.5355  |
| CO <sub>2</sub>                      | 0.0003    | 0.0060 | 0.0000 | 0.0000  | 0.0000  | 0.0000 | 0.0000  | 0.0007  | 0.0006  |
| COS                                  | 0.0000    | 0.0000 | 0.0000 | 0.0000  | 0.0000  | 0.0000 | 0.0000  | 0.0000  | 0.0000  |
| H <sub>2</sub>                       | 0.0000    | 0.0000 | 0.0000 | 0.0000  | 0.0000  | 0.0000 | 0.0000  | 0.2949  | 0.2484  |
| H <sub>2</sub> O                     | 0.0104    | 0.1907 | 0.0000 | 0.0000  | 0.0000  | 1.0000 | 1.0000  | 0.0020  | 0.1592  |
| H <sub>2</sub> S                     | 0.0000    | 0.0000 | 0.0000 | 0.0000  | 0.0000  | 0.0000 | 0.0000  | 0.0000  | 0.0000  |
| N <sub>2</sub>                       | 0.7722    | 0.7775 | 0.0140 | 0.9987  | 0.0140  | 0.0000 | 0.0000  | 0.0553  | 0.0466  |
| NH <sub>3</sub>                      | 0.0000    | 0.0000 | 0.0000 | 0.0000  | 0.0000  | 0.0000 | 0.0000  | 0.0000  | 0.0000  |
| O <sub>2</sub>                       | 0.2077    | 0.0000 | 0.9500 | 0.0000  | 0.9500  | 0.0000 | 0.0000  | 0.0000  | 0.0000  |
| SO <sub>2</sub>                      | 0.0000    | 0.0000 | 0.0000 | 0.0000  | 0.0000  | 0.0000 | 0.0000  | 0.0000  | 0.0000  |
| Total                                | 1.0000    | 1.0000 | 1.0000 | 1.0000  | 1.0000  | 1.0000 | 1.0000  | 1.0000  | 1.0000  |
| V-L Flowrate (lb <sub>mol</sub> /hr) | 36,955    | 2,528  | 119    | 32,075  | 9,988   | 1,966  | 391     | 31,513  | 37,405  |
| V-L Flowrate (lb/hr)                 | 1,066,300 | 67,017 | 3,824  | 898,528 | 321,918 | 35,411 | 7,040   | 645,065 | 751,216 |
| Solids Flowrate (lb/hr)              | 0         | 0      | 0      | 0       | 0       | 0      | 344,973 | 0       | 0       |
| Temperature (°F)                     | 271       | 70     | 90     | 335     | 227     | 450    | 215     | 124     | 400     |
| Pressure (psia)                      | 225.0     | 16.4   | 56.4   | 300.0   | 650.0   | 500.0  | 14.4    | 357.0   | 345.0   |
| Density (lb/ft <sup>3</sup> )        | 0.828     | 0.124  | 0.308  | 0.985   | 2.844   | 47.395 |         | 1.167   | 0.751   |
| Molecular Weight                     | 28.854    | 24.553 | 32.184 | 28.013  | 32.229  | 18.015 |         | 20.470  | 20.083  |

Table 5-2Shell Gasifier-Based Dual-Train IGCC Stream Tables (page 1 of 2)

|                                      | 10     | 11     | 12     | 13     | 14        | 15      | 16        | 17        |
|--------------------------------------|--------|--------|--------|--------|-----------|---------|-----------|-----------|
| V-L Mole Fraction                    |        |        |        |        |           |         |           |           |
| Ar                                   | 0.0003 | 0.0000 | 0.0028 | 0.0037 | 0.0094    | 0.0094  | 0.0088    | 0.0088    |
| CH <sub>4</sub>                      | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000    | 0.0000  | 0.0000    | 0.0000    |
| CO                                   | 0.0103 | 0.0000 | 0.1028 | 0.0128 | 0.0000    | 0.0000  | 0.0000    | 0.0000    |
| CO <sub>2</sub>                      | 0.6559 | 0.0000 | 0.5715 | 0.6545 | 0.0003    | 0.0003  | 0.0746    | 0.0746    |
| COS                                  | 0.0000 | 0.0000 | 0.0003 | 0.0000 | 0.0000    | 0.0000  | 0.0000    | 0.0000    |
| H <sub>2</sub>                       | 0.0052 | 0.0000 | 0.0140 | 0.1377 | 0.0000    | 0.0000  | 0.0000    | 0.0000    |
| H <sub>2</sub> O                     | 0.0054 | 0.0000 | 0.2379 | 0.1009 | 0.0104    | 0.0104  | 0.0695    | 0.0695    |
| H <sub>2</sub> S                     | 0.2518 | 0.0000 | 0.0015 | 0.0000 | 0.0000    | 0.0000  | 0.0000    | 0.0000    |
| N <sub>2</sub>                       | 0.0711 | 0.0000 | 0.0681 | 0.0905 | 0.7722    | 0.7722  | 0.7371    | 0.7371    |
| NH <sub>3</sub>                      | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000    | 0.0000  | 0.0000    | 0.0000    |
| O <sub>2</sub>                       | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2077    | 0.2077  | 0.1101    | 0.1101    |
| SO <sub>2</sub>                      | 0.0000 | 0.0000 | 0.0011 | 0.0000 | 0.0000    | 0.0000  | 0.0000    | 0.0000    |
| Total                                | 1.0000 | 0.0000 | 1.0000 | 1.0000 | 1.0000    | 1.0000  | 1.0000    | 1.0000    |
| V-L Flowrate (lb <sub>mol</sub> /hr) | 1,297  | 0      | 1,725  | 1,300  | 223,032   | 9,350   | 269,752   | 269,752   |
| V-L Flowrate (lb/hr)                 | 51,688 | 0      | 59,536 | 44,107 | 6,435,440 | 269,800 | 7,837,930 | 7,837,930 |
| Solids Flowrate (lb/hr)              | 0      | 10,572 | 0      | 0      | 0         | 0       | 0         | 0         |
| Temperature (°F)                     | 124    | 347    | 280    | 123    | 59        | 220     | 1,075     | 245       |
| Pressure (psia)                      | 60.0   | 23.6   | 23.6   | 14.9   | 14.4      | 193.0   | 14.8      | 14.7      |
| Density (lb/ft <sup>3</sup> )        | 0.382  |        | 0.103  | 0.081  | 0.075     | 0.764   | 0.026     | 0.056     |
| Molecular Weight                     | 39.847 |        | 34.508 | 33.939 | 28.854    | 28.854  | 29.056    | 29.056    |

Table 5-2 (cont'd)Shell Gasifier-Based Dual-Train IGCC Stream Tables (page 2 of 2)

### 5.2 EMISSIONS PERFORMANCE

The operation of the combined cycle unit in conjunction with oxygen-blown IGCC technology is projected to result in very low levels of emissions of  $NO_X$ ,  $SO_2$ , and particulate. A salable byproduct is produced in the form of elemental sulfur. A summary of the plant emissions is presented in Table 5-3.

|                 | lb/10 <sup>6</sup> Btu | tons/year<br>80% capacity | lb/MWh |
|-----------------|------------------------|---------------------------|--------|
| SO <sub>2</sub> | 0.007                  | 106                       | 0.056  |
| NOx             | 0.023                  | 362                       | 0.192  |
| Particulates    | 0.006                  | 98                        | 0.052  |
| CO <sub>2</sub> | 194                    | 3,103,000                 | 1,647  |

# Table 5-3Shell Gasifier Airborne EmissionsIGCC, Oxygen-Blown Shell

The low level of  $SO_2$  in the plant emissions is achieved by capture of the sulfur in the gas by the Sulfinol-M AGR process. The AGR process removes over 99 percent of the sulfur compounds in the fuel gas down to a level of 15 ppm. This results in a concentration in the flue gas of less than 2 ppm. The H<sub>2</sub>S-rich regeneration gas from the AGR system is fed to a Claus plant, producing elemental sulfur. The tail gas treatment unit removes most of the sulfur from the Claus tail gas, which is recycled to the Claus unit. Vent gas from the tail gas treatment unit is vented to the coal dryer, and the resulting emissions will be less than 2 ppm, meeting air quality standards.

 $NO_X$  emissions are limited to 5 ppmvd in the flue gas (normalized to 15 percent  $O_2$ ) by the combined use of syngas dilution (humidification along with steam and nitrogen addition), and combustion turbine firing based on the DOE/GE development programs to lower  $NO_X$  emissions to single digits. Ammonia is removed with process condensate prior to the low-temperature AGR process, which helps lower  $NO_X$  levels as well. A selective catalytic reduction (SCR) process is not required.

Particulate discharge to the atmosphere is limited to extremely low values by the use of the syngas scrubber and the gas washing effect of the AGR absorber.

 $CO_2$  emissions are equal to those of other coal-burning facilities on an intensive basis (1b/10<sup>6</sup> Btu), since a similar fuel is used. However, total  $CO_2$  emissions are lower for a plant with this capacity due to the relatively high thermal efficiency.

### 5.3 WATER BALANCES

Figure 5-2 shows the water flows through the entire plant in gallons per minute. All the water is accounted for including the water lost in chemical reactions or gained in the combustion of

hydrogen in the syngas. Table 5-4 shows an overall water balance for the entire plant and Table 5-5 shows the water loss by major function. The cooling water system is by far the largest water consumer accounting for almost 77 percent of the water lost followed by 17 percent of the water lost in the flue gas. The dry feed Shell gasification process accounts for less than 6 percent of the losses.

| Water In |                                           |            | Water Out |                                  |            |
|----------|-------------------------------------------|------------|-----------|----------------------------------|------------|
| No       | Location                                  | Flow (gpm) | No        | Location                         | Flow (gpm) |
| 1        | Moisture in coal                          | 44.0       | 2         | Coal drying moisture             | 29.9       |
| С        | Syngas Combustion of H <sub>2</sub> in GT | 331.5      | Α         | Water Lost in Gasification Shift | 53.6       |
| 22       | Combustion air for GT                     | 83.6       | 6         | Ash Handling Blowdown            | 69.9       |
| 27       | Combustion air for incinerator            | 0.7        | 7         | Water with Slag                  | 32.9       |
| 33       | Raw Water                                 | 3,491      | В         | Water loss in COS Hydrolysis     | 1.5        |
| D        | Syngas combustion of H2 in<br>Incinerator | 16.9       | 24        | GT Flue gas                      | 674.6      |
|          |                                           |            | 28        | Incinerator flue gas             | 13.7       |
|          |                                           |            | 31        | Sour water blowdown              | 40.5       |
|          |                                           |            | 37        | Cooling tower blowdown           | 762.5      |
|          |                                           |            | 36        | Cooling tower evaporation        | 2,289      |
|          |                                           |            |           |                                  |            |
|          |                                           | 3,968      |           |                                  | 3,968      |

Table 5-4Shell IGCC Overall Water Balance

|            | Table 5-5  |    |          |
|------------|------------|----|----------|
| Shell IGCC | Water Loss | by | Function |

| Gasification losses              | gpm   | gal/MWh |
|----------------------------------|-------|---------|
| Coal drying moisture             | 29.9  | 3.3     |
| Water Lost in Gasification Shift | 53.6  | 6.0     |
| Ash Handling Blowdown            | 69.9  | 7.8     |
| Water with Slag                  | 32.9  | 3.7     |
| Water loss in COS Hydrolysis     | 1.6   | 0.2     |
| Sour water blowdown              | 40.5  | 4.5     |
| Total                            | 228   | 25      |
| Flue gas losses                  |       |         |
| GT Flue gas                      | 674.6 | 75.3    |
| Incinerator flue gas             | 13.7  | 1.5     |
| Total                            | 688   | 77      |
| Cooling water losses             |       |         |
| Cooling tower blowdown           | 762.5 | 85.1    |
| Cooling tower evaporation        | 2,289 | 255.5   |
| Total                            | 3,051 | 340.6   |
| Grand Total                      | 3,967 | 443     |

Shell Gasifier-Based IGCC Case – Block Flow Diagram – Water Flows in Gallons per Minute MAKE-UP WATER **18** [221.7] HUMIDIFIER [2.3]



Figure 5-2

Table 5-6 shows the water balance around the gasification island.

| Water In |                                           |            | Water Out |                                  |            |  |
|----------|-------------------------------------------|------------|-----------|----------------------------------|------------|--|
| No       | Location                                  | Flow (gpm) | No        | Location                         | Flow (gpm) |  |
| 1        | Moisture in coal                          | 44.0       | 2         | Coal drying moisture             | 29.9       |  |
| 4        | Steam                                     | 70.8       | Α         | Water Lost in Gasification Shift | 53.6       |  |
| 5        | Raw water to ash handling                 | 102.8      | 6         | Ash Handling Blowdown            | 69.9       |  |
| 19       | From Humidifier Blowdown                  | 9.5        | 7         | Water with Slag                  | 32.9       |  |
| D        | Syngas combustion of H2 in<br>Incinerator | 16.9       | в         | Water loss in COS Hydrolysis     | 1.6        |  |
| 27       | Combustion air for incinerator            | 0.7        | 16        | Syngas to Humidification         | 2.3        |  |
|          |                                           |            | 27        | Incinerator flue gas             | 13.7       |  |
|          |                                           |            | 31        | Sour water blowdown              | 40.5       |  |
|          |                                           | 245        |           |                                  | 245        |  |

 Table 5-6

 Shell IGCC Water Balance Around Gasification Island

Table 5-7 shows the water balance around the power island. A major portion of the water in the flue gas is from the combustion of hydrogen in the syngas produced during gasification, shift and COS hydrolysis.

Table 5-7Shell IGCC Water Balance Around Power Island

| Water In |                                           |            |    | Water Out               |            |
|----------|-------------------------------------------|------------|----|-------------------------|------------|
| No       | Location                                  | Flow (gpm) | No | Location                | Flow (gpm) |
| 16       | Syngas to Humidification                  | 2.3        | 19 | Humidification blowdown | 9.5        |
| 18       | Humidifier makeup water                   | 221.7      | 23 | GT Flue gas             | 674.6      |
| 21       | GT Diluent Steam                          | 45.1       |    | -                       |            |
| С        | Syngas Combustion of H <sub>2</sub> in GT | 331.5      |    |                         |            |
| 22       | Combustion air for GT                     | 83.6       |    |                         |            |
|          |                                           | 684        |    |                         | 684        |

Table 5-8 shows the water balance around the cooling water system. The wet cooling tower accounts for the majority of the water used in this section.

 Table 5-8

 Shell IGCC Water Balance Around Cooling Water System

|    | Water In  |            |    | Water Out                 |            |
|----|-----------|------------|----|---------------------------|------------|
| No | Location  | Flow (gpm) | No | Location                  | Flow (gpm) |
| 33 | Raw Water | 3,491      | 5  | Raw water to ash handling | 102.8      |
|    |           |            | 4  | Steam to Gasifier         | 70.8       |
|    |           |            | 21 | GT Diluent Steam          | 45.1       |
|    |           |            | 18 | Humidifier makeup water   | 221.7      |
|    |           |            | 37 | Cooling tower blowdown    | 762.5      |
|    |           |            | 36 | Cooling tower evaporation | 2,289      |
|    |           | 3,491      |    |                           | 3,491      |

### 5.4 RAW WATER USAGE

The raw water usage as calculated in this study represents the total amount of water to be supplied from local water resources to provide for the needs of the plant. The amount differs from the total water losses, or the totals appearing in the Overall Water Balance. The difference is attributable to water contributed to the balance via humid air intake to the process, water content of the fuel, and water produced in gasification/combustion. For example, the raw water usage to the cooling tower is calculated as the raw water makeup delivered directly to the cooling tower while the cooling tower loss calculation includes water recycled from other sources. The raw water usage for each power plant can be the determining factor for siting and permitting, as it identifies the impact of the plant on local water availability. Table 5-9 shows the raw water for the plant and the usage through branch streams required to supplement process losses and flue gas losses.

| Water In    |           |                              | Water Usage |          |                              |       |       |
|-------------|-----------|------------------------------|-------------|----------|------------------------------|-------|-------|
| No          | Location  | cation Flow gal/ No Location | Flow        | gal/     |                              |       |       |
| NO LOCATION | Location  |                              | INO         | Location | (gpm)                        | MWh   |       |
| 33          | Raw Water | 3,492                        | 390         | 5        | Makeup water to ash handling | 102.8 | 11.5  |
|             |           |                              |             | 18       | Makeup to Humidifier         | 221.7 | 24.7  |
|             |           |                              |             | 34       | Makeup to Cooling Tower      | 3,042 | 339.6 |
|             |           |                              |             | 35       | Makeup to Condenser          | 125.2 | 14    |
|             |           | 3,492                        | 390         |          |                              | 3,492 | 390   |

Table 5-9 Shell IGCC Raw Water Usage

### 6. WATER LOSS ANALYSIS OF A NATURAL GAS COMBINED CYCLE PLANT

The study design goal was to track the water flows and usages for all the major sections of the plant. Since essentially all fuel-bound hydrogen ends up as water, hydrogen was also tracked for each plant and major process area. An overall water balance and a water balance for each major plant section was then generated.

This design is based on the use of two natural gas-fired combustion turbines, each coupled with a heat recovery steam generator (HRSG) to generate steam for a single steam turbine generator. The plant configuration reflects current information and design preferences, the availability of newer combustion and steam turbines, and the relative latitude of a greenfield site.

This rendition of combustion turbine/HRSG technology is based on selection of gas turbines exemplified by the General Electric 7FA machine. This particular machine provides power output, airflow, and exhaust gas temperature that effectively couple with a HRSG to generate steam for the companion steam cycle plant to produce a total net output of approximately 535 MWe, at an efficiency of 55.4 percent (LHV) and 49.9 percent (HHV). For this study, two gas turbines are used in conjunction with one 1800 psig/1050°F/1050°F steam turbine. Overall performance for the entire plant is summarized in Table 6-1, which includes auxiliary power requirements.

| STEAM CYCLE                                   |                |
|-----------------------------------------------|----------------|
| Throttle Pressure, psig                       | 1,800          |
| Throttle Temperature, °F                      | 1,050          |
| Reheat Outlet Temperature, °F                 | 1,050          |
| GROSS POWER SUMMARY, kWe                      |                |
| Gas Turbine Power                             | 343,400        |
| Steam Turbine Power                           | <u>191,235</u> |
| Gross Plant Power (Note 1)                    | 534,635        |
| AUXILIARY LOAD SUMMARY, KWe                   |                |
| Condensate Pumps                              | 330            |
| High Pressure Boiler Feed Pump                | 2,240          |
| Miscellaneous Balance of Plant (Note 2)       | 500            |
| Gas Turbine Auxiliaries                       | 600            |
| Steam Turbine Auxiliaries                     | 200            |
| Circulating Water Pumps                       | 2,810          |
| Cooling Tower Fans                            | 1,600          |
| Transformer Loss                              | <u>1,650</u>   |
| Total Auxiliary Power Requirement             | 9,930          |
| NET PLANT POWER, kWe                          | 524,705        |
| PLANT EFFICIENCY, kWe                         |                |
| Net Efficiency, % LHV                         | 55.4           |
| Net Heat Rate, Btu/kWh (LHV)                  | 6,165          |
| Net Efficiency, % HHV                         | 49.9           |
| Net Heat Rate, Btu/kWh (HHV)                  | 6,841          |
| CONDENSER COOLING DUTY, 10 <sup>6</sup> Btu/h | 1,060          |
| CONSUMABLES                                   |                |
| Natural Gas, Ib/h (Note 3)                    | 164,488        |

Table 6-1 Two 7FA x One NGCC Plant Performance Summary - 100 Percent Load

Note 1 – Loads are presented for two gas turbines, and one steam turbine. Note 2 – Includes plant control systems, lighting, HVAC, etc. Note 3 – Heating value: 19,666 Btu/lb (LHV), 21,824 Btu/lb (HHV).

### 6.1 HEAT AND MATERIAL BALANCE

The CT, or gas turbine, generator selected for this application is based on the General Electric 7FA model. This machine is an axial flow, constant speed unit, with variable inlet guide vanes. Each CT operates in an open cycle mode. Two 7FAs, each equipped with an individual HRSG, are used to power a single steam turbine in a traditional 2 on 1 arrangement. Pressurized pipeline natural gas is combusted in several parallel dry low-  $NO_X$  combustors that use staged combustion to limit  $NO_X$  formation.

High-temperature flue gas exiting the CT is conveyed through a HRSG (one for each turbine) to recover the large quantity of thermal energy that remains. The HRSG is configured with high-pressure (HP), intermediate-pressure (IP), and LP steam drums and circuitry. The HP drum is supplied with feedwater by the HP boiler feed pump while the IP drum is supplied with feedwater from an interstage bleed on the HP boiler feed pump. IP steam from the drum is mixed with cold reheat steam; the combined flow is then passed to the reheat section. The LP drum produces steam for superheat as well as saturated steam for an integral deaerator.

The Rankine cycle used in this case is based on a state-of-the-art 1800 psig/1050°F/1050°F single reheat configuration. The steam turbine is a single machine consisting of tandem high-pressure (HP), intermediate-pressure (IP), and double-flow low-pressure (LP) turbine sections connected via a common shaft and driving a 3600 rpm hydrogen-cooled generator. The HP and IP sections are contained in a single-span, opposed-flow casing, with the double-flow LP section in a separate casing.

Figure 6-1 is a modified block flow diagram for the overall plant with individual streams identified. Table 6-2 follows the figure with detailed composition and state points for the numbered streams.



Figure 6-1 Natural Gas Combined Cycle Case – Block Flow Diagram

|                                      | 1       | 2         | 3         | 4         |
|--------------------------------------|---------|-----------|-----------|-----------|
| V-L Mole Fraction                    |         |           |           |           |
| Ar                                   | 0.0000  | 0.0094    | 0.0090    | 0.0090    |
| C <sub>2</sub> H <sub>6</sub>        | 0.0500  | 0.0000    | 0.0000    | 0.0000    |
| CH <sub>4</sub>                      | 0.9000  | 0.0000    | 0.0000    | 0.0000    |
| CO                                   | 0.0000  | 0.0000    | 0.0000    | 0.0000    |
| CO <sub>2</sub>                      | 0.0000  | 0.0003    | 0.0377    | 0.0377    |
| H <sub>2</sub> O                     | 0.0000  | 0.0108    | 0.0834    | 0.0834    |
| N <sub>2</sub>                       | 0.0500  | 0.7719    | 0.7442    | 0.7442    |
| O <sub>2</sub>                       | 0.0000  | 0.2076    | 0.1257    | 0.1257    |
| Total                                | 1.0000  | 1.0000    | 1.0000    | 1.0000    |
|                                      |         |           |           |           |
| V-L Flowrate (lb <sub>mol</sub> /hr) | 9,485   | 243,581   | 253,303   | 253,303   |
| V-L Flowrate (lb/hr)                 | 164,488 | 7,027,200 | 7,191,690 | 7,191,690 |
|                                      |         |           |           |           |
| Temperature (°F)                     | 59      | 59        | 300       | 281       |
| Pressure (psia)                      | 14.7    | 14.7      | 14.1      | 14.1      |

Table 6-2Natural Gas Combined Cycle Stream Table

#### 6.2 EMISSIONS PERFORMANCE

The operation of the modern, state-of-the-art gas turbine fueled by natural gas, coupled to a HRSG, is projected to result in very low levels of  $SO_2$ ,  $NO_X$ , and  $CO_2$  emissions. A summary of the estimated plant emissions for this case is presented in Table 6-3.

|                 | lb/10 <sup>6</sup> Btu | tons/year<br>80% capacity | lb/MWh     |
|-----------------|------------------------|---------------------------|------------|
| SO <sub>2</sub> | negligible             | negligible                | negligible |
| NOx             | 0.023                  | 287                       | 0.156      |
| Particulates    | 0.008                  | 98                        | 0.053      |
| CO <sub>2</sub> | 117                    | 1,472,000                 | 801        |

Table 6-3 Airborne Emissions Two 7FA x One NGCC

As shown in the table, values of  $SO_2$  emission are negligible. This is a direct consequence of using natural gas as the plant fuel supply. Pipeline natural gas contains minor amounts of reduced sulfur species that produce negligible  $SO_2$  emissions when combusted and diluted with a large amount of air.

As for particulate discharge, when natural gas is properly combusted in a state-of-the-art CT, the amount of solid particulate produced is very small (less than 20 lb/hour for both 7FA machines).

The low level of  $NO_X$  production is achieved through use of GE's dry low-  $NO_X$  (DLN) combustion system. It is assumed that  $NO_X$  emissions are further limited to 5 ppmvd in the flue gas (normalized to 15 percent  $O_2$ ) by the application of combustion turbine firing based on the DOE/GE development programs to lower  $NO_X$  emissions to single digits. A selective catalytic reduction (SCR) process is not required.

 $CO_2$  emissions are about 60% of the amount from coal-burning facilities on an intensive basis (1b/10<sup>6</sup> Btu), since natural gas contains about 60% as much carbon as coal on a 1b/10<sup>6</sup> Btu basis. However, total  $CO_2$  emissions are more than 50% lower than those from a coal plant with this capacity due to the relatively high thermal efficiency.
# 6.3 WATER BALANCES

Figure 6-2 shows the water flows through the entire plant in gallons per minute. All the water is accounted for including the water lost in chemical reactions or gained in the combustion of natural gas. Table 6-4 shows an overall water balance for the entire plant and Table 6-5 shows the water loss by major function. The cooling water system is by far the largest water consumer accounting for over 76 percent of the water lost. Losses in the flue gas account for about 24 percent of the total.

| Water In |                           |            |    | Water Out                      |            |  |  |
|----------|---------------------------|------------|----|--------------------------------|------------|--|--|
| No       | Location                  | Flow (gpm) | No | Location                       | Flow (gpm) |  |  |
| Α        | Combustion of Natural Gas | 666.0      | 8  | Cooling tower evaporation      | 1,854      |  |  |
| 3        | Combustion air for GT     | 94.8       | 9  | Cooling tower blowdown         | 617.6      |  |  |
| 5        | Raw Water                 | 2,472      | 4  | Moisture in flue gas from HRSG | 760.9      |  |  |
|          |                           |            |    | _                              |            |  |  |
|          |                           | 3,232      |    |                                | 3,232      |  |  |

Table 6-4NGCC Overall Water Balance

Table 6-5NGCC Water Loss by Function

| Flue gas losses           | gpm   | gal/MWh |
|---------------------------|-------|---------|
| GT Flue gas               | 760.8 | 87.0    |
|                           |       |         |
| Total                     | 760.8 | 87.0    |
| Cooling water losses      |       |         |
| Cooling tower blowdown    | 618   | 70.6    |
| Cooling tower evaporation | 1,854 | 212.0   |
| Total                     | 2,471 | 282.6   |
| Grand Total               | 3,232 | 370     |





Figure 6-2 NGCC Case – Block Flow Diagram – Water Flows in Gallons per Minute







.

Table 6-6 shows the water balance around the gas turbine island. A major portion of the water in the flue gas is from the combustion of the natural gas.

| Water In |                                                    |               |    | Water Out                      |            |  |  |
|----------|----------------------------------------------------|---------------|----|--------------------------------|------------|--|--|
| No       | Location                                           | Flow (gpm)    | No | Location                       | Flow (gpm) |  |  |
| A<br>3   | Combustion of Natural Gas<br>Combustion air for GT | 666.0<br>94.8 | 4  | Moisture in flue gas from HRSG | 760.9      |  |  |
|          |                                                    | 761           |    |                                | 761        |  |  |

Table 6-6NGCC Water Balance Around Gas Turbine Island

Table 6-7 shows the water balance around the cooling water system. The wet cooling tower accounts for the majority of the water used in this section.

| Water In |           |            |        | Water Out                                           |              |  |  |
|----------|-----------|------------|--------|-----------------------------------------------------|--------------|--|--|
| No       | Location  | Flow (gpm) | No     | Location                                            | Flow (gpm)   |  |  |
| 5        | Raw Water | 2,472      | 8<br>9 | Cooling tower evaporation<br>Cooling tower blowdown | 1,854<br>618 |  |  |
|          |           | 2,472      |        |                                                     | 2,472        |  |  |

 Table 6-7

 NGCC Water Balance Around Cooling Water System

## 6.4 RAW WATER USAGE

The raw water usage as calculated in this study represents the total amount of water to be supplied from local water resources to provide for the needs of the plant. The amount differs from the total water losses, or the totals appearing in the Overall Water Balance. The difference is attributable to water contributed to the balance via humid air intake to the process, water content of the fuel, and water produced in gasification/combustion. For example, the raw water usage to the cooling tower is calculated as the raw water makeup delivered directly to the cooling tower while the cooling tower loss calculation includes water recycled from other sources. The raw water usage for each power plant can be the determining factor for siting and permitting, as it identifies the impact of the plant on local water availability. Table 6-8 shows the raw water for the plant and the usage through branch streams required to supplement process losses and flue gas losses.

| Water In |           |               |             | Water Usage |                                                |               |             |  |
|----------|-----------|---------------|-------------|-------------|------------------------------------------------|---------------|-------------|--|
| No       | Location  | Flow<br>(gpm) | gal/<br>MWh | No          | Location                                       | Flow<br>(gpm) | gal/<br>MWh |  |
| 5        | Raw Water | 2,472         | 283         | 6<br>7      | Makeup to Cooling Tower<br>Makeup to Condenser | 2,455<br>16.9 | 281<br>1.9  |  |
|          |           | 2,472         | 283         |             |                                                | 2,472         | 283         |  |

Table 6-8NGCC Raw Water Usage

# 7. WATER LOSS ANALYSIS OF A SUBCRITICAL PULVERIZED COAL PLANT

The study design goal was to track the water flows and usages for all the major sections of the plant. Since essentially all fuel-bound hydrogen ends up as water, hydrogen was also tracked for each plant and major process area. An overall water balance and a water balance for each major plant section was then generated.

The design basis of this pulverized coal plant is a nominal 500 MW subcritical cycle. Support facilities are all encompassing, including rail spur (within the plant fence line), coal handling, (including receiving, crushing, storing, and drying), limestone handling (including receiving, crushing, storing, and feeding), solid waste disposal, flue gas desulfurization, wastewater treatment and equipment necessary for an efficient, available, and completely operable facility. The plant is designed using components suitable for a 30-year life, with provision for periodic maintenance and replacement of critical parts.

The subcritical design uses a 2400 psig/1000°F/1050°F single reheat steam power cycle. The steam generator is a natural circulation, wall-fired, subcritical unit arranged with a water-cooled dry-bottom furnace, superheater, reheater, economizer, and air heater components. There are three rows of six burners per each of two walls.

The resulting plant produces a net output of 521 MWe at a net efficiency of 35.4 percent on an HHV basis. Performance is based on the properties of Pittsburgh No. 8 coal, described in the plant design basis. Overall performance for the entire plant is summarized in Table 7-1, which includes auxiliary power requirements.

| Throttle Pressure, psig 2                       | ,400  |
|-------------------------------------------------|-------|
| Throttle Temperature, °F 1                      | ,000  |
| Reheat Outlet Temperature, °F 1                 | ,050  |
| POWER SUMMARY                                   |       |
| 3600 rpm Generator                              |       |
| GROSS POWER, kWe (Generator terminals) 554      | ,400  |
| AUXILIARY LOAD SUMMARY, KWe                     |       |
| Coal Handling                                   | 290   |
| Limestone Handling & Reagent Preparation        | 200   |
| Pulverizers 2                                   | ,260  |
| Ash Handling 3                                  | ,190  |
| Primary Air Fans 1                              | ,580  |
| Forced draft Fans 1                             | ,250  |
| Induced Draft Fans 6                            | ,430  |
| SCR Auxiliaries                                 | 300   |
| Seal Air Blowers                                | 50    |
| Precipitators 1                                 | ,060  |
| FGD Pumps and Agitators 5                       | ,540  |
| Condensate Pumps                                | 840   |
| Boiler Feedwater Pumps (No                      | te 2) |
| Miscellaneous Balance of Plant (Note 3) 2       | ,000  |
| Steam Turbine Auxiliaries                       | 400   |
| Circulating Water Pumps 4                       | ,550  |
| Cooling Tower Fans 2                            | ,570  |
| Transformer Loss 1                              | ,330  |
| TOTAL AUXILIARIES, kWe 33                       | ,840  |
| Net Power, kWe 520                              | ,560  |
| Net Efficiency, % HHV 35                        | 5.4%  |
| Net Heat Rate, Btu/kWh (HHV) 9                  | ,638  |
| CONDENSER COOLING DUTY, 10 <sup>6</sup> Btu/h 2 | ,335  |
| CONSUMABLES                                     |       |
| As-Received Coal Feed, lb/h (Note 1) 402        | ,973  |
| Sorbent, lb/h 41                                | ,513  |

Table 7-1Subcritical PC Boiler Plant Performance Summary100 PERCENT LOAD

Note 1 -As-received coal heating value: 12,450 Btu/lb (HHV)Note 2 -Boiler feed pumps are steam turbine driven.

Note 3 - Includes plant control systems, lighting, HVAC, etc.

# 7.1 HEAT AND MATERIAL BALANCE

The plant uses a 2400 psig/1000°F/1050°F single reheat steam power cycle. The high-pressure (HP) turbine uses steam at 2415 psia and 1000°F. The cold reheat steam flow is reheated to 1050°F before entering the intermediate-pressure (IP) turbine section. Tandem HP, IP, and low-pressure (LP) turbines drive one 3600 rpm hydrogen-cooled generator. The LP turbines consist of two condensing turbine sections.

The feedwater train consists of six closed feedwater heaters (four LP and two HP), and one open feedwater heater (deaerator). Extractions for feedwater heating, deaerating, and the boiler feed pump are taken from all of the turbine cylinders.

The net plant power output, after plant auxiliary power requirements are deducted, is nominally 521 MWe. The overall plant efficiency is 35.4 percent.

The major features of this plant include the following:

- Boiler feed pumps are steam turbine driven.
- Turbine configuration is a 3600 rpm tandem compound, four-flow exhaust.
- Plant has six stages of closed feedwater heaters plus a deaerator.

Figure 7-1 is a modified block flow diagram for the overall plant with individual streams identified. Table 7-2 follows the figure with detailed composition and state points for the numbered streams.

Figure 7-1 Subcritical PC Boiler Case – Block Flow Diagram



|                                        | 1       | 2         | 3      | 4         | 5      | 6         | 7       | 8      | 9      | 10        |
|----------------------------------------|---------|-----------|--------|-----------|--------|-----------|---------|--------|--------|-----------|
| Mole Frac                              |         |           |        |           |        |           |         |        |        |           |
| Ar                                     | 0.0000  | 0.0094    | 0.0000 | 0.0090    | 0.0000 | 0.0090    | 0.0000  | 0.0094 | 0.0000 | 0.0084    |
| CO <sub>2</sub>                        | 0.0000  | 0.0003    | 0.0000 | 0.1320    | 0.0000 | 0.1320    | 0.0000  | 0.0003 | 0.0000 | 0.1238    |
| H <sub>2</sub> O                       | 0.0000  | 0.0104    | 0.0000 | 0.0690    | 0.0000 | 0.0690    | 1.0000  | 0.0104 | 1.0000 | 0.1350    |
| O <sub>2</sub>                         | 0.0000  | 0.2077    | 0.0000 | 0.0445    | 0.0000 | 0.0445    | 0.0000  | 0.2077 | 0.0000 | 0.0414    |
| SO <sub>2</sub>                        | 0.0000  | 0.0000    | 0.0000 | 0.0021    | 0.0000 | 0.0021    | 0.0000  | 0.0000 | 0.0000 | 0.0001    |
| N <sub>2</sub>                         | 0.0000  | 0.7722    | 0.0000 | 0.7433    | 0.0000 | 0.7433    | 0.0000  | 0.7722 | 0.0000 | 0.6913    |
| Total V-L Flow (lb <sub>mol</sub> /hr) | 0       | 169,157   | 0      | 168,160   | 0      | 175,959   | 8,428   | 1,048  | 5,377  | 190,380   |
| Total V-L Flow (lb/hr)                 | 0       | 4,880,923 | 0      | 4,983,410 | 0      | 5,242,740 | 151,831 | 30,233 | 96,863 | 5,504,770 |
| Solids                                 |         |           |        |           |        |           |         |        |        |           |
| Coal (lb/hr)                           | 402,973 | 0         | 0      | 0         | 0      | 0         | 0       | 0      | 0      | 0         |
| Ash (lb/hr)                            | 0       | 0         | 8,231  | 32,925    | 32,925 | 0         | 0       | 0      | 0      | 0         |
| Limestone (lb/hr)                      | 0       | 0         | 0      | 0         | 0      | 0         | 0       | 0      | 41,513 | 0         |
| Temperature (°F)                       | 59      | 59        | 300    | 281       | 280    | 343       | 59      | 59     | 100    | 131       |
| Pressure (psia)                        | 14.7    | 14.7      | 14.1   | 14.1      | 14.1   | 17.7      | 20.0    | 14.7   | 20.0   | 14.7      |

Table 7-2Subcritical PC Boiler Stream Table

# 7.2 EMISSIONS PERFORMANCE

The 1990 CAAA imposed a two-phase capping of  $SO_2$  emissions on a nationwide basis. For a new greenfield plant, the reduction of  $SO_2$  emissions that would be required depends on the availability of  $SO_2$  allowances to the utility, and on local site conditions. In many cases, Prevention of Significant Deterioration (PSD) Regulations will apply, requiring that Best Available Control Technology (BACT) be used. BACT is applied separately for each site, and results in different values for varying sites. In general, the emission limits set by BACT will be significantly lower than NSPS limits. The ranges specified in Table 7-3 will cover most cases. For this study, plant emissions are capped at values shown in Table 7-4.

| SO <sub>2</sub> | 92 to 95 percent removal             |
|-----------------|--------------------------------------|
| NO <sub>X</sub> | 0.1 to 0.45 lb/10 <sup>6</sup> Btu   |
| Particulates    | 0.015 to 0.03 lb/10 <sup>6</sup> Btu |
| Opacity         | 10 to 20 percent                     |

Table 7-3Emission Limits Set by BACT

Source: DOE/FE-0400 MARKET-BASED ADVANCED COAL POWER SYSTEMS FINAL REPORT MAY 1999

# Table 7-4Airborne EmissionsSubcritical PC Boiler

|                 | lb/10 <sup>6</sup> Btu | tons/year<br>80% capacity | lb/MWh |  |
|-----------------|------------------------|---------------------------|--------|--|
| SO <sub>2</sub> | 0.232                  | 4,081                     | 2.240  |  |
| NOx             | 0.100                  | 1,758                     | 0.964  |  |
| Particulates    | 0.024                  | 421                       | 0.231  |  |
| CO <sub>2</sub> | 204                    | 3,591,000                 | 1,966  |  |

The low level of  $SO_2$  in the plant emissions is achieved by capture of the sulfur in the wet limestone forced oxidation FGD system. The nominal overall design basis  $SO_2$  removal rate is set at 95 percent.

The minimization of  $NO_X$  production and subsequent emission is achieved by a combination of low-  $NO_X$  burners, overfire air staging, and selective catalytic reduction (SCR). The low-  $NO_X$  burners utilize zoning and staging of combustion. Overfire air staging is employed in the design of this boiler. SCR utilizes the injection of ammonia and a catalyst to reduce the  $NO_X$  emissions.

Particulate discharge to the atmosphere is reduced by the use of a modern electrostatic precipitator, which provides a particulate removal rate of 99.7 percent.

 $CO_2$  emissions are equal to those of other coal-burning facilities on an intensive basis (lb/MMBtu), since a similar fuel is used.

# 7.3 WATER BALANCES

Figure 7-2 shows the water flows through the entire plant in gallons per minute. All the water is accounted for including the water lost in chemical reactions or gained in the combustion of coal. Table 7-5 shows an overall water balance for the entire plant and Table 7-6 shows the water loss by major function. The cooling water system is by far the largest water consumer accounting for nearly 84 percent of the water lost. Losses in the flue gas and FGD system account for 16 percent of the total.

| Water In |                                 |            |    | Water Out                 |            |  |  |
|----------|---------------------------------|------------|----|---------------------------|------------|--|--|
| No       | Location                        | Flow (gpm) | No | Location                  | Flow (gpm) |  |  |
| 1        | Moisture in coal                | 48.3       | 11 | PC Boiler flue gas        | 928.4      |  |  |
| 2        | Coal Combustion of H2 in Boiler | 325.5      | 12 | Water with gypsum         | 80.7       |  |  |
| 3        | Combustion air for PC Boiler    | 63.4       | 17 | Cooling tower evaporation | 3,891      |  |  |
| 8        | Oxidation air for FGD           | 0.4        | 18 | Cooling tower blowdown    | 1,297      |  |  |
| 13       | Raw Water                       | 5,759      |    |                           |            |  |  |
|          |                                 |            |    |                           |            |  |  |
|          |                                 |            |    |                           |            |  |  |
|          |                                 | 6,197      |    |                           | 6,197      |  |  |

Table 7-5Subcritical PC Boiler Overall Water Balance

| Table 7-6                                    |
|----------------------------------------------|
| Subcritical PC Boiler Water Loss by Function |

| FGD losses                | gpm   | gal/MWh |
|---------------------------|-------|---------|
| Water with Gypsum         | 80.7  | 9.3     |
|                           |       |         |
| Total                     | 81    | 9       |
| Flue gas losses           |       |         |
| PC boiler Flue gas        | 928.4 | 107.0   |
|                           |       |         |
| Total                     | 928   | 107     |
| Cooling water losses      |       |         |
| Cooling tower blowdown    | 1,297 | 149.5   |
| Cooling tower evaporation | 3,891 | 448.5   |
| Total                     | 5,188 | 598.0   |
| Grand Total               | 6,197 | 714.3   |

. ASH ASH [0.4] AIR **AIR** [63.4] [437.2] [437.2] PULVERIZED [928.4] SCR / ESP / [437.2] COAL BOILER 5 COAL 6 AIR HEATER FGD 7 11 [48.3] ID FANS H, 3.6] 10 SLURRY (70% WATER) (COMBUSTION) [325.5] [193.6] STEAM BLOWDOWN WET GYPSUM **BOILER FEEDWATER** REHEAT STEAM THROTTLE STEAM COLD REHEAT [193.6] WATER 4 [38.2] LIMESTONE LIMESTONE WATER GYPSUM SLURRY 9 DEWATERING PREPARATION 12 2 GYPSUM (30% WATER) [80.7] ¥... EVAPORATION 2 2 2 2 [3891] COOLING WATER MAKEUP L/P EXHAUST COOLING WATER COOLING WATER STEAM TURBINE / WATER CONDENSER TREATING FW HEATING SYSTEM CONDENSATE COOLING WATER RETURN CONDENSER MAKEUP 16

.

Figure 7-2 Subcritical PC Boiler Case – Block Flow Diagram – Water Flows in Gallons per Minute

[38.2]



[Water Flow, gpm]

.

Table 7-7 shows the water balance around the FGD island. Over half of the water that ends up in the flue gas is evaporated from the FGD system.

|    | Water In              |            |    | Water Out            |            |
|----|-----------------------|------------|----|----------------------|------------|
| No | Location              | Flow (gpm) | No | Location             | Flow (gpm) |
| 7  | Moisture in flue gas  | 437.2      | 11 | Moisture in flue gas | 928.4      |
| 8  | Oxidation air for FGD | 0.4        | 12 | Water in Gypsum      | 80.7       |
| 14 | Makeup water          | 571.1      |    |                      |            |
|    |                       |            |    |                      |            |
|    |                       | 1,009      |    |                      | 1,009      |

Table 7-7Subcritical PC Boiler Water Balance Around FGD Island

Table 7-8 shows the water balance around the cooling water system. Over 90 percent of the plant water losses occur here.

Table 7-8Subcritical PC Boiler Water Balance Around Cooling Water System

|    | Water In             |            |    | Water Out                 |            |  |  |
|----|----------------------|------------|----|---------------------------|------------|--|--|
| No | Location             | Flow (gpm) | No | Location                  | Flow (gpm) |  |  |
| 4  | Steam blowdown       | 38.2       | 17 | Cooling tower evaporation | 3,891      |  |  |
| 15 | Cooling water Makeup | 5,150      | 18 | Cooling water blowdown    | 1,297      |  |  |
|    |                      |            |    |                           |            |  |  |
|    |                      |            |    |                           |            |  |  |
|    |                      | 5,188      |    |                           | 5,188      |  |  |

# 7.4 RAW WATER USAGE

The raw water usage as calculated in this study represents the total amount of water to be supplied from local water resources to provide for the needs of the plant. The amount differs from the total water losses, or the totals appearing in the Overall Water Balance. The difference is attributable to water contributed to the balance via humid air intake to the process, water content of the fuel, and water produced in gasification/combustion. For example, the raw water usage to the cooling tower is calculated as the raw water makeup delivered directly to the cooling tower while the cooling tower loss calculation includes water recycled from other sources. The raw water usage for each power plant can be the determining factor for siting and permitting, as it identifies the impact of the plant on local water availability. Table 7-9 shows the raw water for the plant and the usage through branch streams required to supplement process losses and flue gas losses.

|    | Water I   | n             |             |                | Water Usage                                                           |                        |                      |
|----|-----------|---------------|-------------|----------------|-----------------------------------------------------------------------|------------------------|----------------------|
| No | Location  | Flow<br>(gpm) | gal/<br>MWh | No             | Location                                                              | Flow<br>(gpm)          | gal/<br>MWh          |
| 13 | Raw Water | 5,759         | 663.8       | 14<br>15<br>16 | Water to FGD System<br>Makeup to Cooling Tower<br>Makeup to Condenser | 571.1<br>5,150<br>38.2 | 65.8<br>593.6<br>4.4 |
|    |           | 5,759         | 664         |                |                                                                       | 5,759                  | 664                  |

Table 7-9Subcritical PC Boiler Raw Water Usage

# 8. WATER LOSS ANALYSIS OF A SUPERCRITICAL PULVERIZED COAL PLANT

The study design goal was to track the water flows and usages for all the major sections of the plant. Since essentially all fuel-bound hydrogen ends up as water, hydrogen was also tracked for each plant and major process area. An overall water balance and a water balance for each major plant section was then generated.

The design basis of this pulverized coal plant is a nominal 500 MWe supercritical cycle. Support facilities are all encompassing, including rail spur (within the plant fence line), coal handling, (including receiving, crushing, storing, and drying), limestone handling (including receiving, crushing, storing, and feeding), solid waste disposal, flue gas desulfurization, wastewater treatment and equipment necessary for an efficient, available, and completely operable facility. The plant is designed using components suitable for a 30-year life, with provision for periodic maintenance and replacement of critical parts.

The steam cycle used for this supercritical case is based on a 3500 psig/1050°F/1050°F single reheat configuration. The turbine generator is a single machine comprised of tandem HP, IP, and LP turbines driving one 3,600 rpm hydrogen-cooled generator. The net plant output power, after plant auxiliary power requirements are deducted, is 518 MWe. The overall net plant efficiency is 39.9 percent. Overall performance for the entire plant is summarized in Table 8-1, which includes auxiliary power requirements.

| F                                        | 1        |
|------------------------------------------|----------|
| STEAM CYCLE                              |          |
| Throttle Pressure, psig                  | 3,500    |
| Throttle Temperature, °F                 | 1,050    |
| First Reheat Outlet Temperature, °F      | 1,050    |
| Second Reheat Outlet Temperature, °F     | 1,050    |
| POWER SUMMARY                            |          |
| Steam Turbine Power                      | 558,190  |
| Generator Loss                           | -8,1900  |
| Total, kWe (Generator terminals)         | 550,000  |
| AUXILIARY LOAD SUMMARY, kWe              |          |
| Coal Handling                            | 420      |
| Limestone Handling & Reagent Preparation | 180      |
| Pulverizers                              | 2,000    |
| Ash Handling                             | 1,800    |
| Primary Air Fans                         | 1,380    |
| Forced draft Fans                        | 1,090    |
| Induced Draft Fans                       | 3,960    |
| SCR Auxiliaries                          | 100      |
| Seal Air Blowers                         | 50       |
| Precipitators                            | 1,000    |
| FGD Pumps and Agitators                  | 4,900    |
| Condensate Pumps                         | 690      |
| Boiler Feedwater Booster Pumps           | 3,600    |
| High Pressure Boiler Feed Pumps          | (Note 2) |
| Miscellaneous Balance of Plant (Note 3)  | 2,000    |
| Steam Turbine Auxiliaries                | 400      |
| Circulating Water Pumps                  | 4,700    |
| Cooling Tower Fans                       | 2,690    |
| Transformer Loss                         | 1,260    |
| TOTAL AUXILIARIES, kWe                   | 32,220   |
| Net Power, kWe                           | 517,780  |
| Net Efficiency, % HHV                    | 39.8%    |
| Net Heat Rate, Btu/kWh (HHV)             | 8,564    |
| CONDENSER COOLING DUTY, 106 Btu/h        | 2,070    |
| CONSUMABLES                              |          |
| As-Received Coal Feed, lb/h (Note 1)     | 356,177  |
| Sorbent, Ib/h                            | 36,692   |

Table 8-1Supercritical PC Boiler Plant Performance Summary100 Percent Load

Note 1 - As-received coal heating value: 12,450 Btu/lb (HHV)

Note 2 - Boiler feed pumps are steam turbine driven.

Note 3 - Includes plant control systems, lighting, HVAC, etc.

# 8.1 HEAT AND MATERIAL BALANCE

The steam cycle used for this case is based on a 3500 psig/1050°F/1050°F single reheat configuration. The HP turbine uses steam at 3515 psia and 1050°F. The cold reheat flow is reheated to 1050°F before entering the IP turbine section.

The turbine generator is a single machine comprised of tandem HP, IP, and LP turbines driving one 3,600 rpm hydrogen-cooled generator. The feedwater train consists of seven closed feedwater heaters (four low pressure and three high pressure), and one open feedwater heater (deaerator). Extractions for feedwater heating, deaerating, and the boiler feed pump are taken from the HP, IP, and LP turbine cylinders, and from the cold reheat piping.

The net plant output power, after plant auxiliary power requirements are deducted, is nominally 518 MWe. The overall net plant efficiency is 39.8 percent.

The major features of this plant include the following:

• Boiler feed pumps are steam turbine driven.

Turbine configuration is a 3,600 rpm tandem compound, four-flow exhaust.

• Plant has seven stages of closed feedwater heaters plus a deaerator.

Figure 8-1 is a modified block flow diagram for the overall plant with individual streams identified. Table 8-2 follows the figure with detailed composition and state points for the numbered streams.

Figure 8-1 Supercritical PC Boiler Case – Block Flow Diagram



| V                                    | 1       | 2         | 3      | 4         | 5      | 6         | 7       | 8      | 9      | 10        |
|--------------------------------------|---------|-----------|--------|-----------|--------|-----------|---------|--------|--------|-----------|
| V-L Mole Fraction                    |         |           |        |           |        |           |         |        |        |           |
| Ar                                   | 0.0000  | 0.0094    | 0.0000 | 0.0090    | 0.0000 | 0.0090    | 0.0000  | 0.0094 | 0.0000 | 0.0084    |
| CO <sub>2</sub>                      | 0.0000  | 0.0003    | 0.0000 | 0.1352    | 0.0000 | 0.1352    | 0.0000  | 0.0003 | 0.0000 | 0.1238    |
| H <sub>2</sub> O                     | 0.0000  | 0.0108    | 0.0000 | 0.0708    | 0.0000 | 0.0708    | 1.0000  | 0.0104 | 1.0000 | 0.1350    |
| O <sub>2</sub>                       | 0.0000  | 0.2076    | 0.0000 | 0.0404    | 0.0000 | 0.0404    | 0.0000  | 0.2077 | 0.0000 | 0.0414    |
| SO <sub>2</sub>                      | 0.0000  | 0.0000    | 0.0000 | 0.0021    | 0.0000 | 0.0021    | 0.0000  | 0.0000 | 0.0000 | 0.0001    |
| N <sub>2</sub>                       | 0.0000  | 0.7719    | 0.0000 | 0.7424    | 0.0000 | 0.7424    | 0.0000  | 0.7722 | 0.0000 | 0.6913    |
| Total                                | 0.0000  | 1.0000    | 0.0000 | 1.0000    | 0.0000 | 1.0000    | 1.0000  | 1.0000 | 1.0000 | 1.0000    |
|                                      |         |           |        |           |        |           |         |        |        |           |
| V-L Flowrate (lb <sub>mol</sub> /hr) | 0       | 145,801   | 0      | 151,812   | 0      | 151,812   | 13,448  | 926    | 4,756  | 168,272   |
| V-L Flowrate (lb/hr)                 | 0       | 4,206,273 | 0      | 4,526,070 | 0      | 4,526,070 | 242,073 | 26,722 | 85,615 | 4,865,518 |
|                                      |         |           |        |           |        |           |         |        |        |           |
| Solids                               |         |           |        |           |        |           |         |        |        |           |
| Coal (lb/hr)                         | 356,177 | 0         | 0      | 0         | 0      | 0         | 0       | 0      | 0      | 0         |
| Ash (lb/hr)                          | 0       | 0         | 7,275  | 29,102    | 29,102 | 0         | 0       | 0      | 0      | 0         |
| Limestone (lb/hr)                    | 0       | 0         | 0      | 0         | 0      | 0         | 0       | 0      | 36,692 | 0         |
|                                      |         |           |        |           |        |           |         |        |        |           |
| Temperature (°F)                     | 59      | 59        | 300    | 281       | 280    | 343       | 59      | 59     | 100    | 131       |
| Pressure (psia)                      | 14.7    | 14.7      | 14.1   | 14.1      | 14.1   | 17.7      | 20.0    | 14.7   | 20.0   | 14.7      |

Table 8-2Supercritical PC Boiler Stream Table

# 8.2 EMISSIONS PERFORMANCE

The 1990 CAAA imposed a two-phase capping of  $SO_2$  emissions on a nationwide basis. For a new greenfield plant, the reduction of  $SO_2$  emissions that would be required depends on the availability of  $SO_2$  allowances to the utility, and on local site conditions. In many cases, Prevention of Significant Deterioration (PSD) Regulations will apply, requiring that Best Available Control Technology (BACT) be used. BACT is applied separately for each site, and results in different values for varying sites. In general, the emission limits set by BACT will be significantly lower than NSPS limits. The ranges specified in Table 8-3 will cover most cases. For this study, plant emissions are capped at values shown in Table 8-4.

|                 | -                                    |
|-----------------|--------------------------------------|
| SO <sub>X</sub> | 92 to 95 percent removal             |
| NO <sub>X</sub> | 0.2 to 0.45 lb/10 <sup>6</sup> Btu   |
| Particulates    | 0.015 to 0.03 lb/10 <sup>6</sup> Btu |
| Opacity         | 10 to 20 percent                     |

Table 8-3Emission Limits Set by BACT

Source: DOE/FE-0400 MARKET-BASED ADVANCED COAL POWER SYSTEMS FINAL REPORT MAY 1999

#### Table 8-4 Airborne Emissions Subcritical PC

|                 | lb/10 <sup>6</sup> Btu | tons/year<br>80% capacity | lb/MWh |
|-----------------|------------------------|---------------------------|--------|
| SO <sub>2</sub> | 0.232                  | 3,607                     | 1.872  |
| NOx             | 0.100                  | 1,554                     | 0.806  |
| Particulates    | 0.024                  | 372                       | 0.193  |
| CO <sub>2</sub> | 207                    | 3,212,000                 | 1,667  |

The low level of  $SO_2$  in the plant emissions is achieved by capture of the sulfur in the wet limestone FGD system. The nominal overall design basis  $SO_2$  removal rate is set at 95 percent.

The minimization of  $NO_X$  production and subsequent emission is achieved by a combination of low-  $NO_X$  burners, overfire air staging, and selective catalytic reduction (SCR). The low-  $NO_X$  burners utilize zoning and staging of combustion. Overfire air staging is employed in the design of this boiler. SCR utilizes the injection of ammonia and a catalyst to reduce the  $NO_X$  emissions.

Particulate discharge to the atmosphere is reduced by the use of a modern electrostatic precipitator, which provides a particulate removal rate of 99.7 percent.

 $CO_2$  emissions are equal to those of other coal-burning facilities on an intensive basis (lb/MMBtu), since a similar fuel is used. However, total  $CO_2$  emissions are lower than for a typical PC plant with this capacity due to the relatively high thermal efficiency.

# 8.3 WATER BALANCES

Figure 8-2 shows the water flows through the entire plant in gallons per minute. All the water is accounted for including the water lost in chemical reactions or gained in the combustion of coal. Table 8-5 shows an overall water balance for the entire plant and Table 8-6 shows the water loss by major function. The cooling water system is by far the largest water consumer accounting for nearly 84 percent of the water lost. Losses in the flue gas and FGD account for 16 percent of the total.

|    | Water In                        |            | Water Out |                           |            |  |
|----|---------------------------------|------------|-----------|---------------------------|------------|--|
| No | Location                        | Flow (gpm) | No        | Location                  | Flow (gpm) |  |
| 1  | Moisture in coal                | 42.7       | 11        | PC Boiler flue gas        | 817.8      |  |
| 2  | Coal Combustion of H2 in Boiler | 287.7      | 12        | Water with gypsum         | 71.3       |  |
| 3  | Combustion air for PC Boiler    | 56.8       | 17        | Cooling tower evaporation | 3,468      |  |
| 8  | Oxidation air for FGD           | 0.3        | 18        | Cooling tower blowdown    | 1,155      |  |
| 13 | Raw Water                       | 5,125      |           |                           |            |  |
|    |                                 |            |           |                           |            |  |
|    |                                 |            |           |                           |            |  |
|    |                                 | 5,512      |           |                           | 5,512      |  |

Table 8-5Supercritical PC Boiler Overall Water Balance

| Table 8-6                                      |
|------------------------------------------------|
| Supercritical PC Boiler Water Loss by Function |

| FGD losses                | Gpm   | gal/MWh |
|---------------------------|-------|---------|
| Water with Gypsum         | 71.3  | 8.3     |
|                           |       |         |
| Total                     | 71    | 8       |
| Flue gas losses           |       |         |
| PC boiler Flue gas        | 817.8 | 94.8    |
|                           |       |         |
| Total                     | 818   | 95      |
| Cooling water losses      |       |         |
| Cooling tower blowdown    | 1,155 | 133.8   |
| Cooling tower evaporation | 3,468 | 401.9   |
| Total                     | 4,623 | 535.7   |
| Grand Total               | 5,512 | 639     |

Figure 8-2 Supercritical PC Boiler Case – Block Flow Diagram – Water Flows in Gallons per Minute



Table 8-7 shows the water balance around the FGD island. Over half of the water that ends up in the flue gas is evaporated from the FGD system.

|    | Water In              |            |    | Water Out            |            |
|----|-----------------------|------------|----|----------------------|------------|
| No | Location              | Flow (gpm) | No | Location             | Flow (gpm) |
| 7  | Moisture in flue gas  | 387.1      | 11 | Moisture in flue gas | 817.8      |
| 8  | Oxidation air for FGD | 0.3        | 12 | Water in Gypsum      | 71.3       |
| 14 | Makeup water          | 501.6      |    |                      |            |
|    |                       |            |    |                      |            |
|    |                       | 889        |    |                      | 889        |

Table 8-7Supercritical PC Boiler Water Balance Around FGD Island

Table 8-8 shows the water balance around the cooling water system. Over 90 percent of the plant water losses occur here.

Table 8-8Supercritical PC Boiler Water Balance Around Cooling Water System

|    | Water In             |            |    | Water Out                 |            |
|----|----------------------|------------|----|---------------------------|------------|
| No | Location             | Flow (gpm) | No | Location                  | Flow (gpm) |
| 4  | Steam blowdown       | 33.9       | 17 | Cooling tower evaporation | 3,468      |
| 15 | Cooling water Makeup | 4,589      | 18 | Cooling water blowdown    | 1,155      |
|    |                      |            |    |                           |            |
|    |                      |            |    |                           |            |
|    |                      | 4,623      |    |                           | 4,623      |

# 8.4 WATER USAGE

The raw water usage as calculated in this study represents the total amount of water to be supplied from local water resources to provide for the needs of the plant. The amount differs from the total water losses, or the totals appearing in the Overall Water Balance. The difference is attributable to water contributed to the balance via humid air intake to the process, water content of the fuel, and water produced in gasification/combustion. For example, the raw water usage to the cooling tower is calculated as the raw water makeup delivered directly to the cooling tower while the cooling tower loss calculation includes water recycled from other sources. The raw water usage for each power plant can be the determining factor for siting and permitting, as it identifies the impact of the plant on local water availability. Table 8-9 shows the raw water for the plant and the usage through branch streams required to supplement process losses and flue gas losses.

| Water In |           |       |                | Water Usage |                         |       |       |  |  |
|----------|-----------|-------|----------------|-------------|-------------------------|-------|-------|--|--|
| No       | Location  | Flow  | gal/<br>MWh No |             | Location                | Flow  | gal/  |  |  |
|          |           | (gpm) |                |             | Location                | (gpm) | MWh   |  |  |
| 13       | Raw Water | 5,125 | 593.8          | 14          | Water to FGD System     | 501.6 | 58.1  |  |  |
|          |           |       |                | 15          | Makeup to Cooling Tower | 4,589 | 531.8 |  |  |
|          |           |       |                | 16          | Makeup to Condenser     | 33.9  | 3.9   |  |  |
|          |           |       |                |             |                         |       |       |  |  |
|          |           | 5,125 | 594            |             |                         | 5,125 | 594   |  |  |

Table 8-9Supercritical PC Boiler Raw Water Usage

# 9. <u>RESULTS</u>

This study resulted in a series of tables and flow diagrams in each report section which document the water loss in specific areas of the study plants. These areas were divided into process losses, flue gas losses and cooling water losses. Also, the raw water usage was determined for each plant to provide an assessment of the makeup requirement and distribution into the plant. The results of the water utilization and loss study are summarized here in Table 9-1 and Table 9-2, shown in gallons per MWh (net) and MMBtu, respectively. The water balance reported with each technology section provides credible completeness for the accounting of water input, output, and uses. Water loss as a function of heat input (MMBtu) is more consistent among types of power plant than as a function of MWh. This is primarily due to inclusion of heat rate in the water loss calculation based on MWh.

An alternative presentation of the results is in the form of bar graphs as shown in Figure 9-1 to compare various types of gasifier and Figure 9-2 to compare technologies, both shown in gallons per MWh.

The results of the raw water usage are summarized in Table 9-3, shown in gallons per MWh. The results are also shown as a bar graph in Figure 9-3.

## 9.1 PROCESS LOSSES

Process losses are more pronounced with the IGCC plants due to the need to add water to the gasification reactions and promote shift within the gasifier to hydrogen and carbon dioxide. There are no process losses with the other plants other than the PC plants, which lose water with disposal of the FGD gypsum cake. The process losses in each of the systems are the smallest category of loss.

The Shell IGCC plant loses coal moisture initially as a water loss, due to the requirement to dry the coal prior to feeding to the gasifier. However, because of the dry feed, it uses less water in the gasification reactions, which are indicated as the water lost to shift reaction in the gasifier. Water lost to shift is the reduction of water content in the syngas resulting from the conversion of water present in the gasifier to hydrogen and carbon dioxide. The E-Gas case has less water lost to shift and less water converted to hydrogen and carbon dioxide, as reflected in the syngas composition. The E-Gas syngas contains nearly 20 percent more carbon monoxide and about 15 percent less hydrogen than either of the GE Energy cases.

Water lost with the slag is consistent for each of the IGCC cases, which reflects the dewatering of the slag and the water content in the residual cake. Minor amounts of water are lost in the COS hydrolysis bed, resulting from the hydrolysis of COS to  $H_2S$  and  $CO_2$ .

Sour Water Blowdown/Water Treatment Effluent can vary with the IGCC plant. The IGCC plant with the highest blowdown is the GE Energy Quench case due to the large sour water

circulation rate around the gasifier quench tank. Rather than treat and discharge the entire process blowdown stream to the sewer, the stream is treated, 90 percent used as makeup for the cooling tower, with the remainder to the plant sewer.

# 9.2 FLUE GAS LOSSES

Flue gas losses are a reflection of the type of power plant and the methodology used for conditioning either the syngas or the flue gas. Each of the IGCC plants has syngas humidification for NOx mitigation, but the E-Gas and Shell cases also need additional steam injection to dilute the syngas. The GE Energy cases utilize only nitrogen injection to dilute the syngas. This can be seen in the variations of flue gas losses for the IGCC gas turbines. The NGCC does not utilize natural gas humidification before firing in the GT combustor, however the flue gas losses are indicative of the water produced from the air and fuel.

The PC power plants each have FGD. These wet processes result in significant water losses to the boiler flue gas.

# 9.3 COOLING WATER LOSSES

Eighty to ninety-nine percent of the power plant raw water usage is through a combination of cooling tower evaporation and blowdown. This water loss is based on a generic site and assumed cooling tower performance characteristics (see Section 1.3.3). Uniformly, cooling tower performance as a function of plant condenser duty (plus 100 MMBtu/h for auxiliary heat loads) was assumed for each power plant. Water loss differences are associated with plant condenser duty which can be traced back to plant efficiency and other uses of condensing steam such as methods of syngas humidification or syngas dilution. The E-Gas condenser duty is lower than the other IGCC cases due to that case utilizing more non-condensing steam for syngas dilution.

|                                  | E-Gas   | Shell   | GE R-C  | GE Quench | NGCC    | PC Sub  | PC Supe |
|----------------------------------|---------|---------|---------|-----------|---------|---------|---------|
|                                  | gal/MWh | gal/MWh | gal/MWh | gal/MWh   | gal/MWh | gal/MWh | gal/MWh |
| Process losses                   |         |         |         |           |         |         |         |
| Coal drying moisture             |         | 3.3     |         |           |         |         |         |
| Water lost in gasification shift | 11.1    | 6.0     | 16.7    | 18.2      |         |         |         |
| Ash quench blowdown              | 8.7     | 7.8     | 8.4     | 9.3       |         |         |         |
| Water with slag                  | 3.0     | 3.7     | 3.3     | 3.7       |         |         |         |
| Water lost in COS hydrolysis     | 0.0     | 0.2     | 0.0     | 0.1       |         |         |         |
| Sour water blowdown              | 3.1     | 4.5     | 0.5     | 2.5       |         |         |         |
| Water with gypsum                |         |         |         |           |         | 9.3     | 8.3     |
| Total                            | 26      | 25      | 29      | 34        | 0       | 9       | 8       |
| F <u>lue gas losses</u>          |         |         |         |           |         |         |         |
| GT flue gas                      | 105.5   | 75.3    | 78.0    | 104.8     | 87.0    |         |         |
| Incinerator flue gas             |         | 1.5     |         |           |         |         |         |
| Boiler flue gas                  |         |         |         |           |         | 107.0   | 94.8    |
| Total                            | 106     | 77      | 78      | 105       | 87      | 107     | 95      |
| Cooling water losses             |         |         |         |           |         |         |         |
| Cooling tower blowdown           | 75.3    | 85.1    | 86.1    | 92.9      | 70.6    | 149.4   | 133.9   |
| Cooling tower evaporation        | 225.9   | 255.5   | 258.5   | 278.9     | 212.0   | 448.5   | 401.9   |
| Total                            | 301     | 341     | 345     | 372       | 283     | 598     | 536     |
| Grand Total                      | 433     | 443     | 452     | 510       | 370     | 714     | 639     |

Table 9-1Water Loss Summary, gallons per MWh

# Table 9-2Water Loss Summary, gallons per MMBtu

|                                  | E-Gas<br>gal/MMBtu | Shell<br>gal/MMBtu | GE R-C   | GE Quench | NGCC<br>gal/MMBtu | PC Sub       | PC Supe      |
|----------------------------------|--------------------|--------------------|----------|-----------|-------------------|--------------|--------------|
| Process losses                   | 94,                | ganninizia         | gainmeta |           | gai, milizia      | gai, milizia | gai, milizia |
| Coal drying moisture             |                    | 0.4                |          |           |                   |              |              |
| Water lost in gasification shift | 1.3                | 0.7                | 1.9      | 1.9       |                   |              |              |
| Ash quench blowdown              | 1.0                | 0.9                | 1.0      | 1.0       |                   |              |              |
| Water with slag                  | 0.3                | 0.4                | 0.4      | 0.4       |                   |              |              |
| Water lost in COS hydrolysis     | 0.0                | 0.0                | 0.0      | 0.0       |                   |              |              |
| Sour water blowdown              | 0.4                | 0.5                | 0.1      | 0.3       |                   |              |              |
| Water with gypsum                |                    |                    |          |           |                   | 1.0          | 1.0          |
| Total                            | 3.0                | 3.0                | 3.3      | 3.5       | 0                 | 1.0          | 1.0          |
| Flue gas losses                  |                    |                    |          |           |                   |              |              |
| GT flue gas                      | 12.1               | 8.9                | 9.0      | 10.9      | 12.7              |              |              |
| Incinerator flue gas             |                    | 0.2                |          |           |                   |              |              |
| Boiler flue gas                  |                    |                    |          |           |                   | 11.1         | 11.1         |
| Total                            | 12.1               | 9.0                | 9.0      | 10.9      | 12.7              | 11.1         | 11.1         |
| Cooling water losses             |                    |                    |          |           |                   |              |              |
| Cooling tower blowdown           | 8.6                | 10.0               | 9.9      | 9.7       | 10.3              | 15.5         | 15.6         |
| Cooling tower evaporation        | 25.9               | 30.1               | 29.8     | 29.0      | 31.0              | 46.5         | 46.9         |
| Total                            | 34.6               | 40.1               | 39.8     | 38.6      | 41.3              | 62.0         | 62.6         |
| Grand Total                      | 50                 | 52                 | 52       | 53        | 54                | 74           | 75           |



Figure 9-1 IGCC Water Loss Summary for Various Gasifier Types, gallons per MWh

Figure 9-2

Comparison of Water Loss for Various Fossil Plants, gallons per MWh



# 9.4 RAW WATER USAGE

The raw water usages as calculated in this study represent the total amounts of water to be supplied from local water resources to provide for the needs of the plants. The amounts differ from the total water losses, or the totals appearing in the Overall Water Balances. The differences are attributable to water contributed to the balance via humid air intake to the process, water content of the fuel, and water produced in gasification/combustion. For example, the raw water usage to the cooling tower is calculated as the raw water makeup delivered directly to the cooling tower while the cooling tower loss calculation includes water recycled from other sources. The raw water usage for each power plant can be the determining factor for siting and permitting, as it identifies the impact of the plant on local water availability. The results show that the volume of raw water for each plant is dominated by the makeup requirement for the cooling tower. The raw water feed stream is also divided into branch streams required to supplement process losses and flue gas losses.

The results of the raw water usage calculations are summarized in Table 9-3, shown in gallons per MWh. The results are also shown as a bar graph in Figure 9-3. The usage is a better measure of the water requirement that would be needed for input to each plant type.

|                                        | E-Gas | Shell   | GE R-C | GE     | NGCC  | PC    | PC    |
|----------------------------------------|-------|---------|--------|--------|-------|-------|-------|
|                                        | 2 040 | Criteri |        | Quench |       | Sub   | Super |
| Raw Water Usage                        | gal/  | gal/    | gal/   | gal/   | gal/  | gal/  | gal/  |
| · ···································· | MWh   | MWh     | MVVh   | MWh    | MWh   | MVVh  | MWh   |
| Makeup to Slurry System                | 8.2   |         | 15.9   | 29.6   |       |       |       |
| Makeup to Quench                       |       |         |        | 6.4    |       |       |       |
| Makeup to Ash handling                 | 10.0  | 11.5    | 11.6   | 11.9   |       |       |       |
| Makeup to Humidifier                   | 34.4  | 24.7    | 20.0   | 42.4   |       |       |       |
| Makeup to Cooling Tower                | 300.1 | 339.6   | 339.1  | 347.2  | 280.7 | 593.6 | 531.8 |
| Makeup to Condenser                    | 18.9  | 14.0    | 1.0    | 1.7    | 1.9   | 4.4   | 3.9   |
| Water to FGD System                    |       |         |        |        |       | 65.8  | 58.1  |
|                                        | 371.5 | 389.8   | 387.6  | 439.2  | 282.6 | 663.8 | 593.8 |

Table 9-3Raw Water Usage Summary, gallons per MWh

Figure 9-3 Comparison of Raw Water Usage for Various Fossil Plants, gallons per MWh



# 9.5 **RECOMMENDATIONS**

This study is the initial phase of an effort to thoroughly document the use of water in power plants, particularly in IGCC applications. The plant configurations used here are based on current commercial offerings and on rigorous systems analysis results. The sites are generic middle USA and water for process and cooling makeup is readily available. There were no economic analyses performed.

The plant designs from this study can be used as a baseline for conducting additional systems analysis. Future analysis could be based upon such design changes as location, water use limitations, and plant efficiency. The sensitivity of water loss to changes in process design could also be determined. Following is a list of possible comparisons which could be used to alter the baseline power plant results.

- Arid Region power plant design
- Use of wet-dry cooling or dry cooling
- IGCC in hot, humid Texas climate
- IGCC in hot, dry west Texas or New Mexico climate
- IGCC in cold, dry, high elevation Wyoming
- IGCC with high moisture low rank coals
- IGCC with higher or lower solids loaded bituminous coal slurry feed
- Transport Reactor gasifier
- Different technology application such as H-turbine, or warm-gas cleaning that changes the efficiency and heat rejection, i.e., water needs.
- A power plant with once-through cooling of the steam cycle portion of the plant.

This report should provide some basis for reviewing the design assumptions, technology capabilities, system performance, etc and identify areas where new technology approaches or gasifier designs could lead to substantially lower water requirements. In turn, this can be a tool for planning R&D and gaining acceptance of out-of-the-box proposals for R&D projects. Examples might be:

• Recycle captured CO<sub>2</sub> as the transport media for coal into the gasifier eliminating the slurry requirement. Since the slurries use recycled water, is this a real reduction of water loss, or merely a displacement within the total system?

- Higher temperature, non-diluted fuel feed to gas turbine leading to higher GT exit temperature and greater heat recovery in steam cycle thus different water requirements for cooling. For R&D planning, this identifies high temperature turbine, cleaner syngas for feed to GT, higher temperature and efficiency HRSG, etc.
- Is wet-dry cooling, dry cooling, or once-through cooling more or less attractive from water loss perspective for one technology versus the others?
- This study has evaluated the water usage and loss for each technology at standard design conditions. It would be appropriate to assess the variations in water requirements with external climate and plant utilization schedules to determine both the maximum water requirements and the average resource withdrawal rates that might be needed to support each of these plant types.

It is recommended that this study and report be used to provide baseline cases and methodology for assessing water usage and loss in various power plant technology conceptual designs. By providing the user of this report with a thorough determination of water input, output, and uses, both internal to the plant and with external requirements for makeup and discharge, the study provides the framework needed to assess water loss issues related to technology selection and design.