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Background

Thermoelectric generation accounted for 39% (136 billion
gallons per day) of all freshwater withdrawals in 2000.

- Why so high?

Evaporation of pure water

—> High concentration of mineral ions in the circulating
cooling water

—>Mineral fouling problem, reducing condenser capacity

To maintain a desired calcium level in the cooling water,
— cycle of concentration, COC = 3.5
— continuously blowdown with fresh makeup water



Three reactions leading to mineral fouling

Reaction 1: dissociation of bicarbonate ions into hydroxyl ions and
carbon dioxide

HCO; (aqg) <> + OH (aq) + COz(g)T

Reaction 2: hydroxyl ions produced further react with existing
bicarbonate ions, producing carbonate ions and water
HCO, (aq) + OH (aq) <> CO,* (aq) + H,0 (/)

Reaction 3: reaction between calcium and carbonate ions, resulting in
the precipitation and crystallization of calcium carbonate particles

Ca?* (aq) + CO,? (ag) <> CaCO, (s) J



Goal of the Project

To develop a scale prevention technology based on
integrated system of physical water treatment (PWT)
and a novel filtration method.



Specific Target

To increase COC from 3-4 to a higher COC (8-10)
How?

To continuously precipitate dissolved calcium ions in water to
calcium particles and

To continuously remove them using a self-cleaning filter



Reduced Blowdown by Increasing COC
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TASKS

Task 1
To develop a self-cleaning filtration system

Task 2
To conduct validation test using a self-cleaning filter system to
prevent mineral fouling and biofouling



Development of Plasma Discharge System
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Fig 3. Voltage and current waveform of nanosecond power supply:
(left) in millisecond time scale; (right) in nanosecond time scale



Use of Pin-Hole Electrode Configurations
to Produce Plasma Discharge in Water
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Fig 3. Schematic diagram of a discharge
system with a single pinhole at the

middle of an insulating sheet using a DC
power supply

Fig 4. Corona discharge(s) produced by pinhole
discharge using a DC power supply: (a) through
a single hole; (b) through multiple holes

Fig 6. Spark discharge produced by
pinhole discharge using a nano-second
pulsed power supply



Use of Wire-Plate Electrode Configurations
to Produce Plasma Discharge in Water

Wire = Tungsten Wire

Plate = Stainless Steel Filter Membrane



Scanning Electron Microscopy Photographs
of Deposited Particles on Filter Membrane
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Fig 1. Schematic diagrams of a self-
cleaning filter using spark
discharges in water:

Water Inlet

(b) calcium carbonate particles



A Self-Cleaning Filtration System
with Spark Discharge (Cooling Tower Water)
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A Self-Cleaning Filtration System
with Spark Discharge (Artificially Hardened Water)
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Fig. 7 Changes in pressure drop under repeated pulsed spark discharges with an atrtificially
hardened water.



Pressure Drop, Torr

A Self-Cleaning Filtration System

with Spark Discharge (Artificially Hardened Water)
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A Self-Cleaning Filtration System
with Spark Discharge in Water
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Fig 1. Schematic diagrams of a self-cleaning filter using
spark discharges in water: (a) electrode on top; (b) electrode
at bottom of the filter surface.



Construction of a Self-Cleaning Filter
with Pulse Spark Discharge in Water
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Fig. 1 Schematic diagram of the testing loop



Design Optimization of a Self-Cleaning Filter
via CFD Modeling
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Construction of a Self-Cleaning Filter
and a Mini Cooling Tower
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Construction of a Self-Cleaning Filter
using Pulse Spark Discharge in Water

Fig. 5 Picture of a filter
system with plasma
generator

Cartridge housing

RN

Fig. 6 Left: cartridge housing
(side view). See a drain
outlet at the bottom for the
removal of debris; Right:
cartridge housing and 10”-
long cartridge (top view)



Pulse Spark Discharge inside 10-inch Long Filter

using Wire-Plate Electrodes
(Top cover removed for photography)

Stainless steel Filter
Used as ground
plate electrode

Fig. 6 Spark discharge to generate plasma inside
filter case



Validation Test with a Self-Cleaning Filter
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Validation Test with a Self-Cleaning Filter
with Pulse Spark Discharge in Water
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Use of Spark Discharges
to Maintain Constant Pressure Drop across Filter
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Fig. 9 Changes of pressure drop with spark discharge over an extended time

period at different flow rates



Validation Test Using Spark Discharge
to Prevent Bio-fouling in Cooling Water
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Fig. 10 Schematic diagram of the bio-fouling
prevention system by spark discharge



Validation Test Using Spark Discharge
to Prevent Bio-fouling in Cooling Water
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water Fig. 12 Colony count of E. coli after spark
discharge



E. coli Deactivation Efficiency
by Spark Discharge in Water
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Fig. 13 E. coli deactivation efficiency by spark discharge in water depending on power
input and on initial concentration of bacteria



Theoretical Modeling (Breakdown Mechanism)
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Fig. 1. (a) —initial bubble form at the moment of high voltage application; (b) — bubble elongation
and gaseous plasma filament formation due to interaction of electrical forces with surface tension
and external pressure forces.
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Fig. 2. (a) Photo of corona discharge in water; (b) schematic diagram of needle shape filament



Theoretical Modeling (Breakdown Mechanism)
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Fig. 3. Comparison of calculated and measured propagation speed of filament during breakdown
of water



Theoretical Modeling (Breakdown Mechanism)

Stability Analysis
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Fig. 4. Schematic diagram of disturbance at
the surface of filament

Generally, the surface tension
tends to minimize the surface area
and subsequently stabilize the
disturbance, while the electrostatic
force tends to push the
disturbance to grow.



MILESTONE LOG

Year 1 | 93006 |31-Dec|3/31/2007| Year 2 Year 3
Task Development of an integrated PWT and filtration system 10 20Q 3Q 40 1Q 20Q 30 40 1Q 20 30Q 40
Task 1. Development of self-cleaning membrane filter
Task 1.1: Review on self-cleaning filter technology prkkkokk
Task 1.1a: Prepare a report on self-cleaning filter technology *
Kick-off meeting with DOE staffs *
Task 1.2: Theoretical modeling of dielectrophoresis il eielelelel
Task 1.3a: Design of conductive filter (both lab visualization and field uses) il ool
Task 1.3b: Design of pulse power supply ok
Task 1.3: Construction of complete filter system with pulse power system rxckkckkk
Project review - Annual contractor review meeting *
Technical report - for the first year effort *
Task 1.4: Visualization of particle adhesion on filter medium with microscope R rkkdkkokokok
Task 1.5: Visualization of particle dislodge from filter medium with
microscope Frkkhhk
Project review - semiannual X
Task 1.6: Optimization of filter design based on Tasks 1.4 ad 1.5 Fhk hokkkdkok
Task 1.7: Construction of self-cleaning filters for fouling tests Fkkhkkkkkok
Project review - Annual contractor review meeting *
Technical report - for the second year effort *
Task 2: Validation test of an integrated PWT and self-cleaning filter system
Task 2.1: Conduct baseline fouling tests - mineral fouling il
Task 2.2: Conduct baseline fouling tests - biofouling fouling rakk
Project review - semiannual *
Task 2.3: Conduct baseline test - combined mineral and biofouoling rackkk
Task 2.4: Conduct test with integrated PWT - mineral fouling el
Task 2.4: Conduct test with integrated PWT - biofouling faielelel

*kkkk|

Task 2.4: Conduct test with integrated PWT - mineral and hiofouling

Preparation of final report - draft

LR

Submission of the final report

Project review - Annual contractor review meeting (last)




Conclusions

Developed a novel self-cleaning filtration method
using pulse spark discharge in cooling water.

CaCO, particles are continuously produced and removed.

The present technology can significantly reduce water blowdown,
which accounts approximately 30% of water withdrawals in a
cooling tower.
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