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Chemical Engineering and Chemistry
Two Decades of Collaboration

• Jointly Directed PhD Students and Postdoctorals
Chemical Engineers
Chemists
> 50 Completed

• >50 Joint Research Grants
• >250 Publications and

Presentations
• 2004 Presidential Green

Chemistry Challenge Award



Outline of Presentation

• Introduction – the Need for CO2 Capture
• Background – Existing Reversible Two-

Component Ionic Liquids (RevILs) 
• Path Forward –The Upcoming Project

Synthesize and Characterization of New Single-
Component RevILs
Determine Reaction Thermodynamics and Rates
Optimize CO2 Capture Solvent Structure
Process Design and Economic Analysis



Electricity Generation from 
Coal Expected to Rise

• Summary of U.S. Electricity Generation:

CoalOther CoalOther

- 2003 -
3.662 trillion kWhrs - 2030 -

5.5 trillion kWhrs
(projected)



Coal Combustion is the Leading Coal Combustion is the Leading 
Contributor to COContributor to CO22 Emissions in U.S.Emissions in U.S.

Wyodak 500 MW PC Power Plant – Gillette, WY

OtherCoal

- 2003 CO2 Emissions -
6300 Mt: 1/3 from coal



Power Plant Flue Gas:
A Technically Challenging Feed Stream

• 350 MW PC power plant flue gas 
characteristics:

Temp = 185°C
Flow = 78 MMscf/hr
CO2 = 6000 t/day

• Must Produce a High Purity Product Stream



Basis for Comparison:
Monoethanolamine (MEA)

• MEA uses chemical absorption
Similar process design

• Well researched, proven
• Problem:

Dilute solvent streams
High operating costs

• Can validate simulation
• Provides efficiency and economic targets

NewPoint Gas MEA Process



The MEA Process: An Energy Hog

• Computer Simulation 
Flue Gas from 350 MW PC Plant
Gives 90% Recovery
Yields 95% CO2 Product Stream

• Bottom Line: Solvent Regeneration Accounts 
for About 2/3 of Operating Costs



Background: 
Traditional Ionic Liquids as Solvents
• Low-Melting Salts

Touted as “Green”
“Zero” Vapor Pressure, No Solvent Losses

• Many Organic Reactions Run Successfully
• Can Dissolve Gaseous CO2
• Separation of Products are Challenging
• Many ILs are Expensive and/or Toxic
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CO2 Capture by Absorption in ILs
DOE, "Ionic Liquids: Breakthrough Absorption Technology for Post-

Combustion CO2 Capture,“ Brennecke, Maginn and Schneider

CO2 Solubility in [bmim]+-Based ILs at 333ºK
Brennecke et al., Acc. Chem. Res, 2007



Mechanisms for CO2 Capture

• Chemical Absorption
Chemical Reaction 
Affords Capture
High Efficiency
Thermally Driven 
Process
Large Heat for 
Regeneration
Thoroughly Researched
Proven Technology

• Physical Absorption
van der Waals Forces 
Give Separation
High Capacities and 
Selectivities Reported
Pressure Driven 
(Typically)
Low Heat for 
Regeneration
Economically Unfeasible
Not Effective…Alone
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The Path to Dual-Mechanism Capture: 
Two-Component RevILs

CO2 (1 atm.) Acts as “Switch”



Guanidine-Based RevIL
CO2 (1 atm.) Acts as “Switch”

• TMBG (tetramethyl-butyl guanidine)

Non-Polar Polar (Ionic Liquid)

Phan, L. et. Al. Ind. Eng. Chem. Res. 2008, 47, 539-545
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• Equimolar methanol/TMBG diluted in chloroform

Turning the RevIL “On” and “Off”

Bubble CO2
Heat



Thermodynamic Relationships 
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Thermodynamics – What Do We Want?

• Low Heat Requirement for Regeneration
• Favorable Equilibrium at Tlow for Capture
• Favorable Equilibrium at Thigh for Release
• Tlow and Thigh as Close to Each Other as 

Possible
Reduces Losses in Cycling Solvent
BUT, true only for High Heat of Regeneration

• Bottom Line: Optimize and Engineer



Preliminary Thermo Measurements
• High-pressure ATR-FTIR cell

Attenuated Total Reflection
IR reflected from sample surface
Pathlength: ~ a few μm

ZnSe Crystal

IR



Dynamics of RevIL Formation

ν O-H

νas(C-H)
νs(C-H)

νas(O=C=O) ν C=O



Reaction of CO2 + Alcohol Results in 
Formation of a Carbonyl

Non-H-Bonded

H-Bonded



Phases of New DOE Project

• Synthesize and Characterize Single-
Component Silyl RevILs

Amine-Based and Guanidine-Based 
Structure/Property Relationships

Both Empirical and Theoretical

Directed Design of Molecules for CO2 Capture
• Thermodynamics, Rates of RevIL Formation
• Optimize CO2 Capture Solvent Structure
• Process Design and Economic Analysis



Limitations of 2-Component RevILs

• Too Complex
Must Control Stoichiometry

• Light Alcohol will Evaporate with CO2

• Heavy Alcohol Has Too Much Heat Capacity
• Too Hard to Control
• Too Much Energy Penalty



Synthesize and Characterize Single-
Component RevILs

• Example Based on Guanidine Molecule



Synthesize and Characterize Single-
Component Silyl RevILs

• Example Based on Silylated Amine
• Structures are Completely Adjustable
• Eliminates Need for Alcohol



Synthesize and Characterize Single-
Component Silyl RevILs

• Example Based on Silylated Guanidine
• Structures are Completely Adjustable
• Eliminates Need for Alcohol
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Must Choose Chemistry That Works 
Well in Presence of Water

• Also Example Based on Silylated Amine
• Change Alkoxy Group to Alkane Group

Si NH2
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 +
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Single-Component Silyl RevILs

• Our Designer Solvents Use Both Mechanisms
• Chemical Absorption

By Reaction of CO2 with RevILs
• Physical Absorption

By Dissolution of CO2 in RevILs
• Increases Capacity

Better Separation with Less Energy Penalty



Interface Structure with Properties

• Measure Equilibrium and Heat of Reaction
• Use Structure/Property Methods to Upgrade 

Empirical Methods
Theoretical Methods

• Synthesize Next Generation of RevILs
Improved Proprieties

• Repeat



Thermodynamics and Rates

• Use Single-Pass Diamond Cell
• Effect of Structure 

On Chemical Equilibrium
On Heat of Reaction
On Rates

• Effect of Temperature
• Effect of CO2 Pressure
• Effect of Water 



Single-Pass Diamond ATR IR Cell

• Ample Adsorption in Single Pass
• Small Volume – No Transport Limitations 
• Temperature-Controlled
• Rapid and Accurate

θ

Sample
Evanescent Wave

Infrared Light

Diamond ATR 
Crystal



Sample Cell for ATR on RevILs

• Ease of Assembly, Operation
• Low Volume, High Surface RevIL
• Facile Flow of CO2

Bolt applies Force

Gasket

Input Output



But What About Viscosity?

• Viscosity of ILs Can be Quite High
• Rate of Transport of CO2 Will Depend on 

Viscosity
• But, Viscosity Can Be Greatly Reduced



Viscosity Change for RevIL
Formation is Highly Nonlinear
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Dealing with Liquid Viscosity

• RevIL Viscosity Can Be Greatly Reduced
• Viscosity Change vs. Conversion is Nonlinear

Viscosity High Only for >95% Conversion 
• Impurities Cut Viscosity Drastically

Water, Dissolved Gases
• Silylation Reduces Viscosity
• Goal: Viscosity not a Barrier to Transport



Path Forward: Economics and Design

• Existing MEA Design As Initial Template 
• Optimal Solvent Candidate
• Measured Thermodynamics and Rate Data
• Optimize Processing Conditions
• Determine Economic Viability Of Process



Process Flow Diagram for Typical 
Solvent CO2 Scrubbing System



Energy Requirements

• Energy Removed
Heat of Adsorption of CO2

Cooling of Exit Stream
• Energy Added

Head of Desorption of CO2

Makeup for Losses in Heat Transfer



ASPEN Flow Sheet for Process

• Industry Standard Design Software
• Permits Process Alternatives, Optimization
• Calculates Flows, Rates, Energy, Economics



Structure/Property Relationships

• Empirical Examples: Hammett Equation, 
Kamlet-Taft

• Goal: Effect of Structure on Properties
• Change Structure

Substituent Groups
Chain Length 

• Assay Effect on Properties
Equilibrium Constants
Heat of Reaction
Transport – i.e. Viscosity



Final Process Optimization

• Solvent with Optimum Balance of Properties
Synthesize and Characterize
Use in Process Design
Determine Best by Energy, Economics

• Optimum Solvent
Demonstrate on Lab Scale
Design Pilot Scale Process
Develop Scalable Process for Synthesis

• Bottom Line: Superior Process for CO2
Capture from Coal-Fired Power Plants



Additional Benefits of Project
• Education

Postdoctoral Students, PhDs, BS Students
Chemical Engineering and Chemistry
Technical Skills Related to Energy Issues
Critical Thinking About Energy Issues

• Other Potential Applications
CO2 Capture from Combustion

Other Fossil Fuels
Biofuels

CO2 Capture from Fermentation
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