
Development of a Supercritical Oxy-combustion Power Cycle with 
99% Carbon Capture 

Southwest Research Institute® and Thar Energy L.L.C. 
• Engineering development, technology 

assessment,  and economic analysis used to 
evaluate technical risk and cost of a novel 
supercritical oxy-combustion power cycle 

• Optimized cycle couples a coal-fired 
supercritical oxy-combustor with a 
supercritical CO2 power cycle to achieve 40% 
efficiency at low firing temperature, 650 C 

– Cycle is limited by TRL of critical components 
• COE $121/MWe with 99% carbon capture 

– 49% increase over Supercritical Steam 
Without Carbon Capture ($81/MWe), 
exceeding the 35% target 

– 21% reduction in cost as compared to 
Supercritical Steam with 90% Carbon Capture 
($137/MWe).  

• Phase 1 completed in September 2013, 
Extended to March 2014 to cover closeout 

• Budget $1.25 million 
• Ready to demonstrate supercritical oxy-

combustor and critical low TRL technologies 
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PROJECT OVERVIEW 
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Project Scope 
• Evaluate a novel supercritical oxy-combustion power cycle 

for meeting the DOE goals of: 
– Over 90% CO2 removal for less than 35% increase in cost of 

electricity (COE) when compared to a Supercritical Pulverized 
Coal Plant without CO2 capture 

• Cycle evaluation based on: 
– Cycle and economic modeling to qualify cost and cycle 

performance 
– Technology gap assessment to identify critical low TRL 

components and technologies 
– Bench scale testing to back up cycle models and evaluate state 

of low TRL technologies 
• Propose development path to address low TRL components 
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Participants 

Southwest Research Institute 

• Project role 
– Project management 
– Cycle analysis and 

optimization 
– Bench scale testing 
– Oxy-combustor design 

• Key personnel 
– Dr. Klaus Brun 
– Dr. Aaron McClung 
– Dr. Rebecca Owston 

Thar Energy LLC 

• Project role 
– Technical gap analysis  
– Economic analysis  

• Key personnel 
– Dr. Lalit Chordia 
– Mr. John Davis 
– Dr. Rachmadian "Doni" 

Wulandana 
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Southwest Research Institute 
• Independent, nonprofit applied research and 

development organization founded in 1947 
• Eleven technical divisions 

– Aerospace Electronics, Systems Engineering & 
Training 

– Applied Physics 
– Applied Power 
– Automation & Data Systems 
– Chemistry & Chemical Engineering 
– Engine, Emissions & Vehicle Research 
– Fuels & Lubricants Research 
– Geosciences & Engineering 
– Mechanical Engineering 
– Signal Exploitation & Geolocation 
– Space Science & Engineering 

• Total 2013 revenue of $592 million  
– 38% Industry, 36% Govt., 26% Govt. Sub 
– $6.7 million was reinvested for internal 

research and development  
• Over 2,800 staff 

– 275 PhD’s / 499 Master's / 762 Bachelor's 
 
 

• Over 1,200 acres facility in San Antonio, 
Texas 

– 200+ buildings, 2.2 million sq. ft of 
laboratories & offices 

– Pressurized Closed Flow Loops 
– Subsea and High Altitude Test Chambers 
– Race Oval and Crash Test Track 
– Explosives and Ballistics Ranges 
– Radar and Antenna Ranges 
– Fire testing buildings 
– Turbomachinery labs 

Benefiting government, industry and the public 
through innovative science and technology 

2.1 Miles 

1.
2 

M
ile

s 



Machinery Program 
• Fluids & Machinery Engineering 

Department 
– Mechanical Engineering Division (18) 

• Capabilities 
– Root cause failure analysis 
– Rotordynamic design/audit 
– Pipeline/plant simulation 
– CFD and FEA analysis 
– Test rig design 
– Performance testing 

• Current DOE Programs 
– Phase 3 pilot scale CO2 compression 

demonstration 
– Sunshot sCO2 turbomahinery 

development and demonstration 
– SunShot high inlet temperature 

combustor development and 
demonstration 

• Recent Commercial Projects 
– Test stands for LNG and CNG process 

evaluation 
– Air Cycle Machine Design, Build, and 

Test  
– Numerical Propulsion System 

Simulation® (NPSS®) Consortium 
Management 
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Thar companies: 
Thar Energy LLC Systems for fuel production, power generation 

and geothermal heating and cooling 
Thar Process, Inc. Supercritical fluid process design and toll 

extractions from organic feedstocks 

Shown here: 
Pharmaceutical production system 
… Good Manufacturing Process  
… Supercritical fluid extraction 

Core competencies: 
 25+ years commercializing “Green” 

supercritical fluid technologies (SCF) 
 

 Designer and developer of supercritical 
fluid processes, systems & major 
components 

 

 Industrial scale 24/7/365 installations, 
world wide: 

 Food 
 Chemicals 
 Nutraceutical 
 Pharmaceutical 
 Chemical 

 

 Heat exchangers for high pressure, high 
temperature application 



Funding 

Participant Type Project Budget Cost Share POC 
Southwest Research 
Institute®  

Not for 
Profit  $      715,000.00   $                   -    Aaron McClung 

Thar Energy LLC.  
 For Profit  $      535,000.00   $  250,000.00  John Davis 

Project Total  $  1,250,000.00   $  250,000.00  
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DOE Supercritical Oxy-Combustion Phase I: 
Development of a Supercritical Oxy-combustion Power Cycle 

with 99% Carbon Capture 

• Optimized cycle couples a coal-fired 
supercritical oxy-combustor with a 
supercritical CO2 power cycle to 
achieve 40% efficiency at a low firing 
temperature of 650 C 

• COE $121/MWe with 99% carbon 
capture 

– 49% over Supercritical Steam Without 
Carbon Capture ($81/MWe), exceeding 
the 35% target 

– 21% reduction in cost as compared to 
Supercritical Steam with 90% Carbon 
Capture ($137/MWe).  

• Phase I completed in September 
2013, budget $1.25 million 

• Ready to demonstrate supercritical 
oxy-combustor and critical low TRL 
technologies 
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Final Supercritical Oxy-combustion 
Cycle Configuration 
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Power Block Thermal Loop Overall 

Efficiency [%] 48 Thermal 78.9 HHV / 81.8 LVH 37.9  HHV / 39.3 LHV 

CO2 Flow [kg/s] 4887 4930 Recycle 

P high / P low [atm] 290 / 82 100 / 93 

T high / T low [C] 650 / 20 653 / 78 
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Combustion Loop TRL 
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Component/Sub-system Technology Type 

Operating Conditions 

Assumed or Specified Performance Characteristics Assumptions Regarding 
Anticipated Application Issues Technology Readiness 

Inlet Outlet 
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Combustion Loop                 
Coal Pulverizer Generic 25 1 25 1 < 9 kw-h/ton   TRL 9 
Slury Pump Generic 25 1 30 92.25 60% Efficiency   TRL 9 
Supercritical oxy-combustor New vertical flow swirl combustor 450 95 93 92.25 98+% combustion efficiency Combustor to be demonstrated in 

Phase 2 
TRL 6 at the 

completion of Phase 2 
demonstration 

Dry pulverized coal feed Supercritical CO2 slurry 25 1 <450 110 Minimal added water content    TRL 2 
Dry pulverized coal feed Posimetric Pump 25 1 <450 110 Dry feed Demonstrated systems can not 

achieve pressure ratio 
TRL 4 

Removal of solid products of combustion Lock-hopper 703 92 80 1 Fluid and thermal losses, impact on efficiency 
unknown 

  TRL 4 

Cyclone Separator Generic 703 93 703 91 98% Removal 
3 atm dP 

Materials considerations and 
thermal insulation for hot gas 

cleanup 

TRL 9 

Recouperator (HXMAIN) Compact micro-channel heat 
exchanger 

703 91 460 88 5 C Pinch Point 
3 atm dP 

See Note 3 TRL 7, See Note 1 

Pre-heater (HXCLEAN) Compact micro-channel heat 
exchanger 

460 88 162 85 5 C Pinch Point 
3 atm dP 

See Note 3 TRL 7, See Note 1 

Sulfur Cleanup Under evaluation for hot, high 
pressure cleanup 

162 85 ? ? Under Evaluation to identify technologies compatible 
with loop conditions 

High efficiency requirements drive 
the need for hot, high pressure 

cleanup 

TRL 5 - 9  
depending on cleanup 

conditions 

Water Removal Under evaluation for hot, high 
pressure cleanup 

162 85 ? ? Under Evaluation to identify technologies compatible 
with loop conditions 

High efficiency requirements drive 
the need for hot, high pressure 

cleanup 

TRL 5 - 9  
depending on cleanup 

conditions 

Boost Pump Generic 150 80 95     Seals and materials for 
supercirtical CO2 

TRL 9 

Air Separation Unit Cryogenic 30 1 450 93 140 kWh/t for 95% O2 based on literature   TRL 9  
                  

Note 1: TRL 7 at the completion of a compantion DOE SunShot Project in 2016 (DE-EE0005804) 

Note 2: TRL 7 at the completion of a compantion DOE SunShot Project in 2013 (FC26-05NT42650) 

Note 3: Materials and manufacturing assumptions for cost and performance 

Note 4: Turbomachinery layout and design is being adressed in other DOE sponsored programs (DE-EE0005804) 



Power Loop TRL 
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Component/Sub-system Technology Type 

Operating Conditions 

Assumed or Specified Performance Characteristics Assumptions Regarding 
Anticipated Application Issues Technology Readiness 
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Power Loop Supercritical CO2 Recompression 
Cycle 

            TRL 7, See Note 1 

sCO2 Turbo-expander   650 290 509 86 90+% efficiency See Note 4 TRL 7, See Note 1 

Recouperator (HXHIGH) Compact micro-channel heat 
exchanger 

509 86 213 84 5 C Pinch Point 
3 atm dP 

See Note 3 TRL 7, See Note 1 

Recouperator (HXLOW) Compact micro-channel heat 
exchanger 

213 84 70 83 5 C Pinch Point 
3 atm dP 

See Note 3 TRL 7, See Note 1 

sCO2 Pump/Compressor    70 83 190 290 05+% efficiency See Note 4 TRL 7, See Note 2 

sCO2 Pump/Compressor    25 82 60 290 05+% efficiency See Note 4 TRL 7, See Note 2 

Pre-cooler Compact micro-channel heat 
exchanger 

70 83 25 82 5 C Pinch Point 
3 atm dP 

See Note 3 TRL 7, See Note 1 

Note 1: TRL 7 at the completion of a compantion DOE SunShot Project in 2016 (DE-EE0005804) 
Note 2: TRL 7 at the completion of a compantion DOE SunShot Project in 2013 (FC26-05NT42650) 
Note 3: Materials and manufacturing assumptions for cost and performance 
Note 4: Turbomachinery layout and design is being adressed in other DOE sponsored programs (DE-EE0005804) 



Economic Assessment 

• Revised* COE of $121/Mwe with 99% carbon 
capture 
– 49% over Supercritical Steam Without Carbon 

Capture ($81/MWe), exceeding the 35% target 
– 21% reduction in cost as compared to Supercritical 

Steam with 90% Carbon Capture ($137/MWe).  
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* COE revised based on feedback from the Phase II Application 



Technology Development: Proposed 
follow on 

• 1 MWth Supercritical Oxy-combustor 
Demonstration  

• Test bed for technology development 
– Supercritical oxy-combustor 
– Particulate cleaning of the compact 

microchannel heat exchanger 
– Solids injection at pressure 
– Solids removal at pressure 

• Advance technologies from TRL 2, 
Technology Concept, to TRL 6, Pilot 
Scale System Demonstrated in a 
Relevant Environment  

• Operate with coal water slurry, plan for 
dry feed or sCO2 slurry extension 
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Oxy-Combustion Test Loop 
• Major components  

– Charge Compressor or Pressurized CO2 Feed 
– Combustor 

• Oxygen feed 
• Coal slurry feed 

– Cyclone separator 
• Solids removal and handling 

– Recuperater 
– Water scrubber and cleanup 

• Liquid removal and handling 
• CO2 removal and handling 

– Cooling Tower 
– Boost Compressor 

• Operating Conditions 
– 450 – 650 C (800 – 1200 F) 
– 102 atm (1500 psi) 

• Flow Rates: 1 MWth 
– 3.4 kg/s Hot side flow rate  
– 3.2 kg/s  CO2 recycle 
– 0.05 kg/s Coal feed 
– 0.08 kg/s O2 Feed 
– 4.25 kg/s H2O Recycle 
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TECHNOLOGY OVERVIEW 
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Proposed Cycle: Cryogenic Pressurized 
Oxy-combustion (CPOC) 

• Transcritical cycle (gas, liquid, and supercritical 
states)  

• Leverage iso-thermal compression to minimize 
compression work 
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Proposed Cycle: Supercritical Oxy-
combustion 

• Leverages recent SunShot and DOE-NE cycles 
development 

• Efficiencies up to 60% possible for the power block 
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Anticipated Technology Areas 
• Primary  

– Pressurized oxy-combustion 
• Negate need for CO2 recompression 
• Increase combustion and cycle efficiencies 

• Secondary 
– High-pressure and high-temperature cleanup technologies 

• Required to commercialize a sCO2 oxy-combustion cycle 
• Tertiary 

– High efficiency power cycle 
• Must be cost effective to be a viable commercial project 

• Unplanned 
– Solid fuel injection at pressure  

• Impact of slurrying agent (water) on efficiency 
– Solid waste removal at pressure 

• Removal of (hot) solid waste under pressure 
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Direct Fired Cycles 

• Managing contaminants 
– Fly ash and particulates (erosion, clogging) 
– Heavy metals (corrosion) 
– Water (corrosion) 
– Gasses (expander performance, corrosion) 

• Gas quality 
– Gas composition will vary with fuel and cleanup 

technology, equipment condition 
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Indirect Cycles 

• Anticipated technology developments contained in the 
thermal loop 
– High pressure oxy-combustor 
– Cleanup (Fly-ash, Metals, Water, Gases) of supercritical 

CO2  
• Power cycle is tertiary for this project 

– Any power cycle can be integrated into dual loop 
configuration with minimal modification 

– Technology enhancements can be re-integrated into a 
single loop configuration down the line 

• Potential efficiency hit with interface heat exchanger 
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TECHNO-ECONOMIC ANALYSIS 
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Approach 
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Analysis Methods 
• Cycle models 

– Aspen Plus 7.3.2 
– Power cycle models without combustion for comparison and 

optimization 
– Optimized cycle with combustion 

• Economics 
– DOE Power Systems Financial Model (PSFM) 
– Plant specifics determined by QGESS and FOA 
– Component costs incorporated from Tech Gap Analysis 
– Plant performance determined by cycle analysis 

• Technology Gap Analysis 
– Required components determined by initial and optimized cycle 

layouts 
– Component level technology assessment determined through 

discussion with vendors and literature search 
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Cycle Analysis 

• Aspen Plus 7.3.2 for cycle performance analysis 
– Mature component specifications from vendor or 

QGESS Process Modeling Design Parameters 
– Low TRL component data from engineering 

assessment 
• Evaluated baseline power block performance of 

the two proposed cycles 
• Incorporated combustion model into selected 

cycle 
• Optimize cycle configuration for high efficiency, 

low cost 
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CPOC Power Block 

CPOC w/out Combustion Thermal Efficiency 
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sCO2 Recompression Power Block 

sCO2 w/out Combustion Thermal Efficiency 
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Cycle Layout Challenges 
• Recuperated sCO2 power block has a narrow thermal input band 

– Change in temperature across power block is only 250 C 
– Minimize thermal losses through the system 
– Hot combustor inlet  

• Gas phase cleanup must occur at low temperature to condense water, remove 
sulfur, condensable gasses 

• Particulate removal prior to gas turbine (direct) or interface heat exchanger 
(indirect) 

– Leads to hot particulate removal 
– Particulates are at pressure, must be removed to ambient conditions 

• Combustor operating pressure 
– Direct fired combustor must operate at high side turbine pressure, 270 atm 
– Indirect fired combustor can operate at reduced pressure, above75 atm 
– Higher pressure required advanced pulverized coal injection technologies 

• Indirect cycle incurs efficiency penalty due to interface heat exchanger 
• Coal-water slurry feed has significant efficiency impact depending on water 

content 
– Losses due to heat of vaporization are not recoverable 
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Indirect Cycle Model with Supercritical 
Oxy-Combustor 
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Final Supercritical Oxy-combustion 
Cycle Configuration 
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Efficiency [%] 48 Thermal 78.9 HHV / 81.8 LVH 37.9  HHV / 39.3 LHV 

CO2 Flow [kg/s] 4887 4930 Recycle 

P high / P low [atm] 290 / 82 100 / 93 

T high / T low [C] 650 / 20 653 / 78 
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Economic Assessment 

• Reported COE of $162/MWe with 99% carbon 
capture in June 2013 

• Revised* COE of $121/Mwe with 99% carbon 
capture 
– 49% over Supercritical Steam Without Carbon 

Capture ($81/MWe), exceeding the 35% target 
– 21% reduction in cost as compared to Supercritical 

Steam with 90% Carbon Capture ($137/MWe).  
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* COE revised based on feedback from the Phase II Application 



Revisions to COE Calculation 

• Per DOE Feedback 
– Revise coal cost from $10.25/ton to $36.57/ton in 

calculating TOC (based on 2012 QGESS Feedstock 
Costs) 

– Installation factor should not have been applied 
when calculating BEC 

• Changes to match analysis 
– Revise initial fuel requirements for calculating TOC 

based on predicted 39% HHV plant efficiency, 
reduce inventory from 6102 ton/d to 5000 ton/d  
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Estimated equipment costs, 550 MW pressurized oxy-
combustion power plant, single power block 

Base cost Units Spare cost Spares Total 
Process equipment $ Million operating $ Million on hand $ Million 
Core systems           
Cyclones, inc. linings, peripherals $53 18 52.7 
 - Spare cyclones 2.9 2 5.9 
FGD, inc. metals removal $45 1 45.0 
 -- Spare scrubber 6 1.7 1 1.7 
 -- Spare hydrocyclone 12 0.1 2 0.2 
Piping, combustion side $30 1 29.9 
ASU ex pumps $160 4 160.0 
 -- Standby ASU spare 40.0 1 40.0 
Pumps for liq. O2 $6 8 6.0 
 -- Spare pump 0.8 1 0.8 
Coal slurry preparation $2 1 2.0 1 4.4 
SunShot power loop @ $1,200/kWe $660 1 66.0 1 726.0 
HXs, combustion side $140 8 140.1 
 -- Spare HX 17.5 2 35.0 
Combustor, No spare $68 1 68.0 0 67.7 
1st Subtotal (BEC), Core systems $1,164 1,315.3 
Support facilities*           
Coal receiving 24.4 
Coal crushing 16.6 
Ducting and stack 21.3 
Ash handling 6.5 
Accessory electric plant 32.2 
Instrumentation & control         12.1 
2nd Subtotal (BEC), Ancilliary systems   113.1 
Total BEC, equipment 1,428.4 
* Numbers drawn from NETL Bituminous Coal Utility study, 2012 update, 
    Case 12 (PC with sequestration) 
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Capital costs according to PSFM 
guidelines (in red) 

Totals for: 
Portion Cumulative 

Capital cost category Basis Factor $ Million $ Million 
BEC - Bare Erected Cost 

Process equipment ** Itemized cost summary 1,315.30 
Support facilities *** NETL, 2012 update, Case 12 113.1 

  Total BEC     1,428.40 1,428.40 
EPC - Engineering Project Costs 
  Total EPC portion 0-10% BEC, "process in use" 10% 142.84 1,571.24 * 
TPC - Total Project Costs 

Process cost 5-20% of process capital 20% 314.248 
Project cost 15-30% of BEC+EPC+process cost 30% 471.372 

  Total TPC portion     785.62 2,356.86 
TOC - Total Overnight Cost 

Royalties Assume zero 0 
Pre-production Gross estimate 1 
 - 6 mos labor Included in gross estimate 
 - 1 mo maintenance materials Included in gross estimate 
 - 1 mo non-fuel consumables Included in gross estimate 
 - 1 mo waste disposable Included in gross estimate 
Working capital Accounted for in PSFM model 
Inventory capital: 
 - Spare parts 0.5% of cum TPC 0.50% 19.4 
 - Initial fuel (60 days) 5,000 ton/d $36.00  13.34 
 - Initial CaCO3 (60 days) 1.45 kg/s = 3.2 lb/s makeup $0.20  0.1 
Land, for PC-type utility 300 acres 3,000 0.9 
Financing - cost of securing it Percent of TPC 2.70% 105 
Other owner's costs Percent of TPC 15% 583.4 

  Total Owner's cost     722.14 3,079.00 
TASC - Total As-Spent Capital 

Escalation while expending capital Accounted for in PSFM model 0 
Interest while expending capital Accounted for in PSFM model   0 

  Total TASC     0 3,079.00 
Analysis: 

TASC by PSFM calculation 2,505.12 *
* 

w/ TS&M w/ TS&M 
Benchmark COE Case 11, 2012 update 80.95 N/A 
Benchmark COE w/ 90% CCS Case 12, 2012 update 137.28 147.47 
COE by PSFM Includes O&M N/A 121.21 

* Cumulative amount goes to Cell B37, "Plant Inputs" page of PFSM workbook 
*
* TASC calculation comes from Cell B12 of the "COE Calculation" page of the PSFM workbook 
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Operations and maintenance cost 
in $ thousand 

Operations and maintenance cost, $ thousand 
Bold items entered on O&M page of PSFM workbook 

PSFM 
page, 

Cost items Measure Rate $/h $1,000/y Cell ID Source: 
Variable costs: 
Labor: 

Operating labor base rate $/hr 
$33.3

6 $33.36 69 BLS, NAICS 221100 job category 51-0000, May 2013 
Operating labor burden % of base 30% $10.01 21 B27 Rate from Exhibit 4-13, Case 12, August 2012 
Labor O-H charge rate % of labor 25% $10.84 23 Rate from Exhibit 4-13, Case 12, August 2012 
Subtotal: Operating labor wages ex burden, per operator 92 B26 Calculated 
Total: Operating labor cost per operator 113 Calculated 
Estimated operating laborers 65 B25 Calculation based on Exhibit 4-13 oper. labor cost 
Administrative and supervisory Total 1,674 Exhibit 4-13, Case 12, August 2012 

Administrative and supervisory 
Per 
operator 25.56 B28 Calculated 

Consumables: 
Water Total 3,804 B31 Exhibit 4-13, Case 12, August 2012 
Chemicals Total 24,914 B32 Exhibit 4-13, Case 12, August 2012 
Waste disposal Total 5,129 B34 Exhibit 4-13, Case 12, August 2012 

Fixed costs: 
Administrative and supervisory Total 3,348 B37 Exhibit 4-13, Case 12, August 2012 
Taxes and insurance 39,025 B38 Exhibit 4-13, Case 12, August 2012 
Maintenance costs % EPC/yr 3% 86,527 B39 Thar assumption 

Assumptions and Benchmarks: 
Base hours in year:  2,080 

*Operating labor cost:  $7,384,208  per yr 
*Maintenance labor cost:  $12,705,913  per yr (included in overall maintenance percentage) 

*Administrative & support labor cost:  $5,022,530  per yr (assume 1/3 variable, 2/3 fixed) 
*Property taxes and insurance:  $39,024,956  per yr 

* Benchmarks taken from Exhibit 4-13, Case 12, August 2012 
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TECHNOLOGY GAP ANALYSIS 
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Methodology 

• Tabulate components required for the cycle layouts 
– Identify commercially available components 
– Identify relevant technologies, vendors for non-standard or immature 

components 

• Provide component cost and performance feedback to 
economic and cycle models 
 

 
 

DE-FE0009395 Project Closeout 2/21/2014 



Combustion Loop TRL 
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Component/Sub-system Technology Type 

Operating Conditions 

Assumed or Specified Performance Characteristics Assumptions Regarding 
Anticipated Application Issues Technology Readiness 

Inlet Outlet 
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] 
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Combustion Loop                 
Coal Pulverizer Generic 25 1 25 1 < 9 kw-h/ton   TRL 9 
Slury Pump Generic 25 1 30 92.25 60% Efficiency   TRL 9 
Supercritical oxy-combustor New vertical flow swirl combustor 450 95 93 92.25 98+% combustion efficiency Combustor to be demonstrated in 

Phase 2 
TRL 6 at the 

completion of Phase 2 
demonstration 

Dry pulverized coal feed Supercritical CO2 slurry 25 1 <450 110 Minimal added water content    TRL 2 
Dry pulverized coal feed Posimetric Pump 25 1 <450 110 Dry feed Demonstrated systems can not 

achieve pressure ratio 
TRL 4 

Removal of solid products of combustion Lock-hopper 703 92 80 1 Fluid and thermal losses, impact on efficiency 
unknown 

  TRL 4 

Cyclone Separator Generic 703 93 703 91 98% Removal 
3 atm dP 

Materials considerations and 
thermal insulation for hot gas 

cleanup 

TRL 9 

Recouperator (HXMAIN) Compact micro-channel heat 
exchanger 

703 91 460 88 5 C Pinch Point 
3 atm dP 

See Note 3 TRL 7, See Note 1 

Pre-heater (HXCLEAN) Compact micro-channel heat 
exchanger 

460 88 162 85 5 C Pinch Point 
3 atm dP 

See Note 3 TRL 7, See Note 1 

Sulfur Cleanup Under evaluation for hot, high 
pressure cleanup 

162 85 ? ? Under Evaluation to identify technologies compatible 
with loop conditions 

High efficiency requirements drive 
the need for hot, high pressure 

cleanup 

TRL 5 - 9  
depending on cleanup 

conditions 

Water Removal Under evaluation for hot, high 
pressure cleanup 

162 85 ? ? Under Evaluation to identify technologies compatible 
with loop conditions 

High efficiency requirements drive 
the need for hot, high pressure 

cleanup 

TRL 5 - 9  
depending on cleanup 

conditions 

Boost Pump Generic 150 80 95     Seals and materials for 
supercirtical CO2 

TRL 9 

Air Separation Unit Cryogenic 30 1 450 93 140 kWh/t for 95% O2 based on literature   TRL 9  
                  

Note 1: TRL 7 at the completion of a compantion DOE SunShot Project in 2016 (DE-EE0005804) 

Note 2: TRL 7 at the completion of a compantion DOE SunShot Project in 2013 (FC26-05NT42650) 

Note 3: Materials and manufacturing assumptions for cost and performance 

Note 4: Turbomachinery layout and design is being adressed in other DOE sponsored programs (DE-EE0005804) 



Power Loop TRL 
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Component/Sub-system Technology Type 

Operating Conditions 

Assumed or Specified Performance Characteristics Assumptions Regarding 
Anticipated Application Issues Technology Readiness 
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Power Loop Supercritical CO2 Recompression 
Cycle 

            TRL 7, See Note 1 

sCO2 Turbo-expander   650 290 509 86 90+% efficiency See Note 4 TRL 7, See Note 1 

Recouperator (HXHIGH) Compact micro-channel heat 
exchanger 

509 86 213 84 5 C Pinch Point 
3 atm dP 

See Note 3 TRL 7, See Note 1 

Recouperator (HXLOW) Compact micro-channel heat 
exchanger 

213 84 70 83 5 C Pinch Point 
3 atm dP 

See Note 3 TRL 7, See Note 1 

sCO2 Pump/Compressor    70 83 190 290 05+% efficiency See Note 4 TRL 7, See Note 2 

sCO2 Pump/Compressor    25 82 60 290 05+% efficiency See Note 4 TRL 7, See Note 2 

Pre-cooler Compact micro-channel heat 
exchanger 

70 83 25 82 5 C Pinch Point 
3 atm dP 

See Note 3 TRL 7, See Note 1 

Note 1: TRL 7 at the completion of a compantion DOE SunShot Project in 2016 (DE-EE0005804) 
Note 2: TRL 7 at the completion of a compantion DOE SunShot Project in 2013 (FC26-05NT42650) 
Note 3: Materials and manufacturing assumptions for cost and performance 
Note 4: Turbomachinery layout and design is being adressed in other DOE sponsored programs (DE-EE0005804) 



Critical Components 
• Supercritical oxy-combustor for solid fuels 

– Novel, low TRL component 
• Compact, micro-channel heat exchanger 

– Initial development under SunShot DE-EE0005804 
– Tolerance to particulate loading and cleaning methods 

should be demonstrated 
• Coal-water slurry feed 

– Water content has large impact on cycle performance 
• Particulate removal 

– Represents a technical challenge 
– Potential source for significant thermal and efficiency 

losses 
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SwRI Oxy-Combustor Concept 
• Pulverized coal + water slurry 

– Recycle water from combustion 
loop cleanup 

– Water provides flame 
temperature control 

• Rotating impeller fuel injector 
– Optimize shear-mixing of slurry, 

CO2, and O2 
– Controlled fuel injection rate 

through impeller, O2 injection 
controls flame position 

• CO2 cooled liner 
– Flame position, diffusion, and 

dilution control 
– Flame centering 
– Wall temperature buffering 

 
 

Coal Slurry 

Liner Casing 

Impeller 

sCO2 
O2 

Mixing  
Zone 

Motor 

O2 

Startup: Fuel 
(NG, Oil) +  
Pilot/Torch 
Igniter 
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Combustor Design 
• Designed to feed a coal-water 

slurry and O2 into supercritical 
CO2 
– Inlet Temperature 450 C (842 F) 
– Inlet Pressure 96.5 bar (1400 psi) 
– Firing Temperature 700 C (1292 F) 

• Limited data on coal combustion 
at elevated pressures 

• Combustor design through 
simulation, augmented with coal 
combustion properties testing 

• Flow rates at 550 MWe 
– Coal 50 kg/s 
– O2 80 kg/s 
– H2O 50 kg/s 
– CO2 4000+ kg/s 

 
 

Rotary  
Atomizer 

O2 Feed 

Coal-water  
slurry feed 

CO2 Feed 

Combustion  
zone 

CO2 Feed 

Inner 
liner 

Concept 

Analysis 

Design 



Coal Slurry CFD Modeling – Particle Physics 
Coal Slurry Droplet Physics: DPM (Discrete Phase Model) 

– Evaporation (heat transfer via convection and radiation) 
– Devolatilization of Coal 
– Gas Phase Reactions: 

• C1.18H3.32O0.68N0.0503S0.224 + 1.09O2  1.18CO + 1.66H2O + 0.0251N2 + 0.0224SO2 
• CO + 0.5O2  CO2 Residence Time (s) 

Example: 100 𝜇𝜇m slurry particle 
size (50/50 coal-water, wt. %) 
using stochastic tracking for  
turbulent dispersion of 
particles.  



CO2  
inlet 

O2 inlet Coal feed 

Slurry injection 

O2 injection 

Combustion zone 

Supercritical Oxy-combustor 

• Completed initial design 
during Phase I 
– Sized for 1 MWth 
– Flow optimization with 

reactions using Fluent 
and Chemkin 

– Structural analysis for 
100 atm, 650 C 

• Initial test stand design 
to demonstrate the 
swirl combustor 

DE-FE0009395 Project Closeout 2/21/2014 

 



Micro-channel compact heat exchanger tolerant 
of particulate loading  

• Compact, low cost heat exchangers are a key 
technology impacting footprint and cost of the 
supercritical oxy-combustion cycle 
– Microchannel heat exchangers are currently at a low 

TRL, but are actively being developed for multiple 
applications including supercritical CO2 power cycles.  

• It is expected that 1-5 micron may pass through 
the cyclone separator 
– Heat exchanger sparing and cleaning are important 

considerations.  
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CWS Alternatives 

• Water concentration 
has a direct influence 
on combustion 
efficiencies  
– Loss due to latent heat 

of vaporization 

• Steam is not an asset 
for this cycle 
configuration 
 

• Alternative injection 
technologies include  
– sCO2 as a slurrying agent 
– Posimetric pump 
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% Water/Coal 

by weight 

% Efficiency 

(HHV) 

% Efficiency 

(LHV) 

0.0 37.50 38.90 

25.0 35.18 36.51 

50.0 29.70 30.80 

         
  



sCO2 Slurry Feed Concept 
• Variation on the LICADO 

process and the work of 
Botero  

• Utilize a selective 
agglomeration process to 
separate pulverized coal 
based on carbon content 

• High carbon content is 
entrained in CO2 

• Two operational modes 
– Separate below combustor 

pressure and pressurize slurry 
– Separate at elevated pressure 

using CO2 boost 
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Particulate Removal 
• Cyclone separator used to 

remove fly ash from hot gas 
stream prior to the micro 
channel heat exchanger 

• Fly ash must be captured 
from underflow and 
depressurized for treatment 
or removal 

• Two concepts identified for 
further investigation 
– Lock chamber installed in 

between two off-phase 
control valves (left)  

– Water injection with orifice 
pressure reduction (right) 
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BENCH SCALE TESTING 
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Bench Scale Testing 

• Combustion properties of pulverized coal in CO2 
– Coal slurry preparation 
– Injector visualization 
– Combustion testing using the IQT 

• Rotary atomizer visualization 
– Evaluate idealized atomizer for atomizing coal slurry 

into CO2 
– Density ratio O(1) compared to O(100) to O(1000) for 

typical rotary atomizer applications 
– Documented in final report 
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Combustion Properties Testing 

• Measure autoignition delay for pulverized coal 
in supercritical CO2 

• Evaluated using SwRI’s Ignition Quality Tester 
(IQT) 
– Standard test apparatus for developed by SwRI 

• Preliminary work included slurry preparation, 
injector modification, injector visualization 
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Slurry Preparation 

• PRB coal provided by 
CPS Energy of San 
Antonio 

• Refined to 15 µm and 7 
µm for compatibility 
with the IQT injection 
system 

• Slurries of varying ratios 
prepared using water, 
iso-octane, and tolunine 
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Particulate distribution and agglomeration in a 
20% coal and iso-octane slurry 



Injector Visualization 

• Need to verify spray pattern using modified 
IQT injector  
– Ensure proper distrubution  
– Minimize contact with IQT wall 

• Utilize Optical Bomb operated by SwRI Div. 3 
– Used for combustion testing and visualization 
– Rated for pressure, not temperature and pressure 
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Stock Injector Modified Injector 



Injector Visualization 
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 1/5400 s 2/5400 s 3/5400 s 

Diesel into air 
at 12.8 bar with 

needle valve 

   

Diesel into air 
at 1 bar with 

needle valve tip 
removed 

   

Sand slurry 
into air at 1 bar 

with needle 
valve tip 
removed 

   
 

Slurry is carried with greater momentum compared to typical diesel injection 



IQT Autoignition Delay Testing 
• The Ignition Quality Test Apparatus (IQT™) is 

a bench top constant-volume combustion 
chamber  

• Used to quantify the reactivity of fuel and 
lubricants 

• Method 
– Heated combustion chamber is filled with 

compressed gas at elevated pressure 
– Test fluid is injected using a pump-line-nozzle 

injector 
– Ignition delay is then measured as shown at 

lower right 
• Modifications for Coal Slurry 

– Stock fuel pump replaced with a variable 
displacement pump 

– Injector tip modified to flow solid fuel slurry 
– Testing run in diagnostics mode  to acquire 

needle lift and combustion trace on an 
oscilloscope 
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Typical Test Results 

• 40% coal – iso-octane 
slurry with 15 µm coal 
particles clogged after 
two injections 

• 20% coal – iso-octane 
slurry with 7.5 µm coal 
particles provided 
consistent ignition 
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Autoignition Delay Timing 

Fuel Skin Temperature 
Charge Air 

Temperature Avg. Ignition Delay 
[°C] [°C] [msec] 

Is
o-

O
ct

an
e 

568 538 9.7748 
500 475 12.4238 
450 420 27.321 

437.5 411 32.543 
431 406 38.695 
428 400 38.982 
426 399 40.705 
425 398 42.9845 

425.5 398 40.852 
400 376 no-combustion 

20
%
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oa

l C
on

ce
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n,
 

7.
5𝜇𝜇

m
 P
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ize
 423 395 20.052 

423 395 14.968 
420 394 21.167 
415 391 28.653 
400 376 27.879 
400 373 46.721 
400 373 27.209 
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PATH FORWARD 
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Proposed Phase II: 
1 MWth Supercritical Oxy-combustor Demonstration 

• Test bed for technology development 
– Supercritical combustor 
– Particulate cleaning of the compact microchannel heat exchanger 
– Solids injection at pressure (sCO2 slurry, posimetric pump) 
– Solids removal at pressure 

• Advance technologies from TRL 2, Technology Concept, to TRL 6, Pilot Scale System 
Demonstrated in a Relevant Environment  

• Operate with coal water slurry, plan for dry feed or sCO2 slurry extension 
 

Supercritical  
Oxy-combustor 

Cyclone 
Separator 

Underflow  
Particulate  

Separation 

Boost 
Compressor Water  

Scrubber 
Supercritical  

Oxy-combustor 

Cyclone 
Separator 

Underflow  
Particulate  

Separation 

Water  
Scrubber 

Cooling Tower 
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Critical Components Development 
Path 

• Supercritical oxy-combustor for solid fuels 
– Initial design completed for Phase II Demonstration 

• Compact, micro-channel heat exchanger 
– Tolerance to particulate loading and cleaning methods 

should be demonstrated 
• Coal-water slurry feed 

– Coal-sCO2 slurry 
– Posimetric pump 

• Particulate removal 
– Adaption of conventional technologies 
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Oxy-Combustion Test Loop 
• Test Hardware 

– Charge Compressor or Pressurized CO2 Feed 
– Combustor 

• Oxygen feed 
• Coal slurry feed 

– Cyclone separator 
• Solids removal and handling 

– Recuperater 
– Water scrubber and cleanup 

• Liquid removal and handling 
• CO2 removal and handling 

– Cooling Tower 
– Boost Compressor 

• Operating Conditions 
– 450 – 650 C (800 – 1200 F) 
– 102 atm (1500 psi) 

• Flow Rates: 1 MWth 
– 3.4 kg/s Hot side flow rate  
– 3.2 kg/s  CO2 recycle 
– 0.05 kg/s Coal feed 
– 0.08 kg/s O2 Feed 
– 4.25 kg/s H2O Recycle 

B278 
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WRAPUP 
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Development of a Supercritical Oxy-combustion Power Cycle with 
99% Carbon Capture 

Southwest Research Institute® and Thar Energy L.L.C. 
• Engineering development, technology 

assessment,  and economic analysis used to 
evaluate technical risk and cost of a novel 
supercritical oxy-combustion power cycle 

• Optimized cycle couples a coal-fired 
supercritical oxy-combustor with a 
supercritical CO2 power cycle to achieve 40% 
efficiency at low firing temperature, 650 C 

– Cycle is limited by TRL of critical components 
• COE $121/MWe with 99% carbon capture 

– 49% increase over Supercritical Steam 
Without Carbon Capture ($81/MWe), 
exceeding the 35% target 

– 21% reduction in cost as compared to 
Supercritical Steam with 90% Carbon Capture 
($137/MWe).  

• Phase 1 completed in September 2013, 
Extended to March 2014 to cover closeout 

• Budget $1.25 million 
• Ready to demonstrate supercritical oxy-

combustor and critical low TRL technologies 
 

Supported by DOE Project DE-FE0009395 
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