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Need for New Concepts and Technologies

 Design for plant life
 Current and future needs (CO2 market, etc.) 

Fl ibilit i d i t d t Flexibility in design to adapt 
 Environmental regulations (near zero 

emissions for fossil fuels)
 Low-value fuels and co-firing (bitumen, 

petcoke, biomass, etc)petcoke, biomass, etc)
 Advancements in technology, e.g.,

 Ion transport membrane for O2 production
 High temperature materials (boiler tubes, 

etc)etc)
 Moving away from Rankin cycle (lower 

efficiency)
 3rd generation of oxy-fuel combustion 

systemssystems
 Advanced turbines and power cycles
 Emerging technologies…
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Hydroxy-Fuel Technology Development
Motivation:
 Develop the technology base necessary for 

the implementation of efficient zero-p
emission fossil fuel systems

Overall Objectives:
 Investigate the feasibility of hydroxy-fuelInvestigate the feasibility of hydroxy fuel 

combustion for the 3rd generation of oxy-
fuel systems

 Investigate the reduction in size and capital 
cost of equipment

 Use of water/steam, preferably with no 
FGR, to moderate the flame temperature

 Achieve high concentration of CO2 (> 90% 
on dry basis) in the exit flue gas stream
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3rd Generation Oxy-fuel Systems

3rd Generation Oxy-fuel Combustion

Oxy steam Combustion O Combustion (no FGR)Oxy-steam Combustion O2 Combustion (no FGR)
 Low NOx & excess O2,
 Higher radiative & convective heat 

transfer,

 Minimize NOx & excess O2,
 High radiative & convective heat 

transfer,,
 Process model, CFD, new system 

and component design

Up to 40% scale reduction in unit size

,
 New materials,
 Process model, CFD, new system 

and component design
Up to 80% scale reduction in unit sizeUp to 40% scale reduction in unit size Up to 80% scale reduction in unit size
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Novel Burner Design

Modes of Operation:
 Firing Rate 0.3 MWth (1.0 X 106 Btu/h)
 Fuels: Natural gas Oil Emulsion Fuels: Natural gas, Oil, Emulsion,  

Pulverized coal, Petcoke, Coal Slurry, etc.
Operational modes

►O2/steam►O2/steam
►O2/RFG & O2/CO2
►Air & oxygen enriched air
►O2/steam/RFG2
►O2/steam/CO2

Variable mass flow rates on secondary 
and tertiary streams
Variable oxygen concentration on 

secondary and tertiary streams
 Independent swirl on secondary and 
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Burner Operational Principles
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Design and Optimization

 Determined system requirements via HYSYS simulations

 Extended simulations to fix additional combustion parameters; i.e. 
O2-steam composition adiabatic flame temperature etcO2 steam composition, adiabatic flame temperature, etc.

 Based on swirl burner theory, established the desired burner exit 
parameters

B d HYSYS Si l ti i l b i t d th Based on HYSYS Simulations, swirl burner requirements, and the 
possible effect of the combustor geometry, created a short list of 
possible burner geometries
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Design Validation

Temperature CO Distribution O2 Distribution Equivalence Ratio

?
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CFD Simulation done by CEPG CFD Group



Design Validation (cont’d)
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CFD Simulation done by CEPG CFD Group



Burner Prototypes Development

1st  Generation 2nd Generation 3rd Generation 4th Generation

 Fixed Swirl Generator
 Testing

 Variable Swirl Generator
 Testing

 Modified Variable Swirl Generator
 Testing

 2nd Variable Swirl Generator
 Testing
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Pilot-Scale Implementation

Oxy-fuel Vertical Combustor
Research Facility (VCRF) Firing rate for tests: 0.2 MWth (0.7 X 106 Btu/h)

 Combustion mode: O2/RFG or O2/SteamCombustion mode: O2/RFG or O2/Steam
 Fuel: Saskatchewan lignite coal
 Flow Paths: 

 O2/Steam: ESP  CHX1  StackO2/Steam: ESP  CHX1  Stack
 O2/RFG: ESP  CHX1  Recycle  Stack

 Measurements
 Gas composition (O2 CO2 CO SO2 NOx)Gas composition (O2, CO2, CO, SO2, NOx)
 Mercury (Ontario Hydro Method & CEM)
 Suction pyrometer
 Radiation heat fluxRadiation heat flux
 Ash Samples
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VCRF Flow Diagram
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Results – Oxy-fuel Temperature Profile
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Results  - Oxy-fuel Combustor Exit 
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Results – Oxy-fuel Combustor Exit (cont’d)
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Results – Oxy-steam Temperature Profile
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Results – Oxy-steam Combustor Exit
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Results – Oxy-steam Combustor Exit (cont’d)
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Results (cont’d)

Suction Pyrometer Measurements on Centre Line
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Results – High Swirl Oxy-Steam Flame
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Conclusions

 Best results, for oxy-steam, was achieved when all of they
O2 was sent via the outer annulus and moderate to high
swirl numbers where used; best results, for oxy-fuel, was
achieved when all of the O2 was sent via the inner annulusachieved when all of the O2 was sent via the inner annulus.
 Oxy-steam combustion resulted in high CO2 concentrations

(~ 90%), low CO, moderate NOx and typical SOx levels.
Eli i ti f l t i t d d d Elimination of recycle stream, in oxy-steam mode, reduced
air infiltration issues boosting CO2 concentrations by 5-
10%.
 Combustor outlet moisture content approximately was 60%
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Oxy-steam Flame
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