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• Project timeline and objectives overview

• Introduction to MTR

• Membrane technology background

• Results to date (project NT43085)

• New project (NT05312) objectives and future 
plans

Outline
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Project number NT43085
Project period: 4/1/07 to 3/31/09 Funding: $788,266 DOE; $197,066 MTR

DOE program manager: Heino Beckert, Participants: MTR, DOE
Bruce Lani

Project scope: investigate the feasibility of new polymer membranes and process for cost-
effective capture of CO2 from power plant flue gas.

All project objectives were met within time and budget; details to follow.

Project number NT05312
Project period: 10/1/08 to 9/30/10 Funding: $3,439,200 DOE; $957,630 cost share

DOE program manager: Jose Figueroa Participants: MTR, APS, EPRI, DOE

Project scope: field demonstrate the MTR membrane process with commercial-sized 
components at APS’s Cholla coal-fired power plant; at the conclusion of the project, be in a 
position to gauge the technical and economic viability of membrane-based CO2 capture 
from flue gas.

Project overview
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Natural Gas:

Petrochemicals:

Hydrogen (Refinery):

Propylene/Nitrogen

CO2/CH4, CH4/N2
NGL/CH4

H2/CH4, CO, CO2

Introduction to MTR

MTR designs, manufactures, and sells membrane systems for industrial gas separations
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Membrane technology basics

⎟
⎠

⎞
⎜
⎝

⎛
×⎟

⎠

⎞
⎜
⎝

⎛
==α

B

A

B

A

B

A
B/A D

D
S
S

P
P

Solubility selectivity: 
favors large molecules

Diffusivity selectivity: 
favors small molecules

1 Barrer = 10-10 cm3 (STP) cm / (cm2 s cmHg)
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• Spiral-wound and hollow fiber modules are used.

• Membranes have to be 
thin to provide useful 
fluxes.

Membrane technology basics
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Flue gas cleanup in a coal-fired power plant

Boiler
Coal 

CO2

Air
ESP FGD

Ash

Steam to turbines

Membrane challenges for treating this large volume of low-pressure gas:
• Large membrane area needed → high CO2 permeance is a must!
• How to generate driving force w/o using large compression or vacuum power
• Potential harmful contaminants include fly ash, SO2, water, and trace metals.

Sulfur

600 MW =
500 m3/s flue gas 
= 1540 MMscfd = 
460 tons CO2/h
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Polaris™ membranes are 
extremely permeable to CO2
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• Countercurrent sweep with combustion air provides “free” driving force.

• 90% capture as liquid CO2 can be achieved using about 15% of plant energy.

• Even with Polaris™, 0.5 to 1 million m2 of membrane area are required for 90% 
CO2 capture from a 600 MWe plant. 

MTR’s process design for 
flue gas CO2 capture
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High CO2 permeance reduces capture 
cost more than high selectivity

10

15

20

25

30

35

40

0 20 40 60 80 100 120

Cost of 
capture

($/ton CO2)

Membrane CO2/N2 selectivity

1,000 gpu

1,500 gpu

3,000 gpu

90% CO2 recovery

PolarisTM 1

PolarisTM 3

      CO2
Permeance

Cost assumes membrane at $150/m2 and includes CO2 compression



11

Polaris™ membrane and module scale-up
• More than 500 m2 of membrane were produced on commercial-sized equipment.

• 8-inch diameter modules were fabricated and tested. 

Polaris™ membrane has been 
scaled-up to commercial size
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Mixed-gas module performance
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Mixed-gas selectivity is lower than pure-gas and decreases with increasing 
temperature.  At 50°C, module selectivity is still >20.
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Spiral-wound 
countercurrent sweep modules work

The optimal capture process uses about 100% sweep/feed ratio. At this sweep 
rate, the module shows a 10-fold increase in CO2 flux compared to no sweep.
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APS Red Hawk power plant
• Uses 8-inch diameter Polaris™ membrane modules.

• Captured CO2 will be used for biofuels production.

Polaris™ membrane systems have 
proven field experience

BP Pascagoula 
• Conducted 3-month field test of 8-inch diameter 

Polaris™ membrane modules.

• Removed CO2 and higher hydrocarbons from raw 
natural gas.
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Cholla field test

• A 6-month field test of 8-inch diameter Polaris membrane modules at Cholla coal-fired plant is 
scheduled to begin in 4Q09.

• Key objectives are to demonstrate sweep operation in commercial-sized modules and to 
investigate membrane lifetime.

Skid footprint is 24’ x 7’
250,000 scfd flue gas slipstream
Captures 1 ton CO2/day
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• Total energy use in plant is 56 MW; uses 
5.5 MW water pumps.

• Plant produces 100 million m3/yr of fresh 
water.

Membrane plants of the required size exist today

Ashkelon desalination plant
• 40,000 spiral-wound RO 

membrane modules

• 1.5 million m2 membrane area
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Efficient module packing and low-cost 
components reduce installed cost

About 130 mega-module skids would be required for a 600 MWe power plant.

Typical cost ($/m2) 
Type of unit High-pressure gas 

separation (steel vessels) 
Reverse osmosis 
(plastic vessels) 

Membrane 20 5 

Membrane modules 100 10-15 

Installed modules in a skid 570 20-50 
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Advantages and challenges

• Particulate matter and its potential impact on membrane lifetime
• Energy losses due to feed and permeate side pressure drops
• Cost reduction and device scale-up issues
• Integration with power plants and effect of recycle on boiler
• Lack of operating experience in the power industry

• Simple operation; no chemical reactions, no moving parts

• Tolerance to high levels of wet acid gases; inert to oxygen

• Compact and modular with a small footprint

• Low energy use; no additional water used (recovers water from flue gas)

• Builds on existing, low-cost technology already used at a similar scale

Advantages:

Challenges:



19

Future plans beyond the current project

Develop plans for a 50-100 ton CO2/day system

Include CO2 liquefaction section 

Incorporate low-cost 
components (target $150/m2)

Explore options for testing air recycle to boiler
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Summary

• Earlier project demonstrated the potential of high 
permeance membranes and a novel process design to 
cost-effectively capture CO2 from coal-fired flue gas.

• Operating experience with real flue gas is critical. The 
upcoming field test at Cholla will be a key test of the 
membrane approach.

• The scale-up and cost reduction roadmap can be 
modeled on existing membrane technology.

• Next step is a 10-fold larger system that demonstrates 
low-cost components and CO2 liquefaction.
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Why doesn’t high membrane 
selectivity help?

• high selectivity demands 
high membrane area.

• increasing the pressure 
ratio is energy intensive.
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The importance of pressure ratio

For this example,

• the concentration of CO2 in the permeate can never exceed 50% no matter how 
selective the membrane

• At least half the permeate must be the slow component (N2)

• Permeation of the slow component determines the membrane area

• Infinite selectivity = no slow component permeation = infinite membrane area
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Would a membrane with 
higher selectivity help?
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Polaris™ membranes are extremely 
permeable to CO2
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• Initial 2-year project (4/1/07 to 3/31/09) investigated the feasibility of new polymer 
membranes to cost-effectively capture CO2 from flue gas.

• All objectives were met within time and budget; key findings include:

– Membranes can be fabricated into commercial modules; membrane permeance is 
10x higher than existing materials and stability in acid gases looks good.

– For a real-world membrane system, membrane permeance is much more 
important than selectivity.

– Novel design shows promise to capture 90% CO2 using <15% of plant energy.

• New 2-year, $4.4 million project (10/1/08-9/30/10) with EPRI and APS will field 
demonstrate the membrane process with commercial-sized components; key 
objectives are:

– Run a 6-month field test at APS’s Cholla coal-fired power plant.

– With EPRI, conduct a comparative economic analysis of the proposed process.

– Develop low-cost component prototypes and a cost reduction roadmap.

– Investigate scale-up issues and begin plans for next-stage, 10x larger 
demonstration.

Project overview
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Key remaining challenges to be 
addressed in the current project

• Particulate matter and its potential impact on 
membrane lifetime

• Energy losses due to feed and permeate side 
pressure drops

• Cost reduction and device scale-up issues

• Lack of operating experience
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