Chemical Looping Development

- Project Overview
- Technology
- Project Objectives
- Project Methodology
- Future Plans
The Alstom Group – Two main activities
Equipment & services for power generation & rail transport

N°1 worldwide in turnkey power plants
N°1 worldwide in hydroelectric
N°1 worldwide in environmental control systems
N°1 worldwide in services for electricity utilities

N°1 worldwide in high speed and very high speed

N°2 worldwide in urban transport (metro and trams)

Alstom makes 1 metro in 4 and 1 tram in 3
> 76,000 staff in > 70 countries

Total orders 2007/08 :
€23.5 bn
Project Overview

• US DOE Program:
 Plants Capture and Emissions Program

• Funding: $6.3MM
 – Cooperative Agreement: September 2008
 – US DOE: 80%
 – Alstom: 20%

• Performance dates:
 – Budget Period 1: Sept ’08 - Sept ’09
 – Budget Period 2: Oct ’09 - Mar ‘11

• Project Participants:
 – Alstom
 • PEMM Corp
 • Univ. of British Columbia
Overall Objective:

Develop, test and commercialize a limestone-based chemical looping system for existing and new pulverized coal-fired power plants, for the following performance:

- Over 90% CO₂ capture from Coal
- Less than 20% increase in COE for Existing Coal-fired Plant
- Capital cost – 20% lower than Conventional Boiler Island for new plant (not including CO₂ compression)
- Less than $20/ton, avoided cost of CO₂ capture (with CO₂ compression)
Chemical Looping Program
Developmental Status

Developmental Equipment

Standard Equipment

Fuel and Limestone Prep
PC/CFB Steam Generator
Gas Clean Up
Power Block ST / GT
Ash Disposal
Switch Yard

Replace:
Chemical Looping
CO₂ Recovery Option
Chemical Looping Development

- Project Overview

- Technology

- Project Objectives

- Project Methodology

- Future Plans
Chemical Looping Concept

- **Why do it?:** Lowest Cost Option for Capturing CO_2 from Coal

- **What is it?:** Oxy-Firing without Oxygen Plant
 - Solid Oxygen Carrier Circulates between Oxidizer and Reducer
 - Oxygen Carrier: Carries Oxygen, Heat and Fuel Energy
 - Carrier picks up O_2 in the Oxidizer, leaves N_2 behind
 - Carrier Burns the Fuel in the Reducer
 - Heat produces Steam for Power

- **Oxygen Carrier:**
 - Metal Oxide: Fe, Ni, Mn, Cu...Ores or on Substrates
 - Limestone-based carriers

- **Metal Oxides:**
 - Process Development: CHALMERS UNIVERSITY
 - Equipment Development: ALSTOM

- **Limestone-based:** ALSTOM
Chemical Looping Concept

- Chemical Looping Flexibility
 - Option 1: Chemical Looping Combustion
 - Excess Air-to-Fuel
 - Product Gas is CO₂
 - Heat Produces Steam for Power
 - Option 2: Chemical Looping Gasification
 - Excess Fuel-to-Air
 - Product gas is SynGas
 - No Inherent CO₂ Capture
 - Option 3: Hydrogen Production
 - Add CaO – CaCO₃ Loop to Option 2
 - Add Calciner
 - Product Gas is Hydrogen
 - Calciner Off-Gas is CO₂
Chemical Looping
Options and Applications

Applications

- CO₂ Capture - PC/CFB Retrofit
- CO₂ Capture - Ready Power Plant
- Advanced Steam Cycles

- IGCC with Downstream CO₂ Capture
- Industrial SynGas
- Coal-to-Liquid Fuels

- CO₂ Capture - PC/CFB Power Plant
- CO₂ Capture - Ready PC/CFB Power Plant
- Advanced Steam Cycles
- IGCC with CO₂ Capture
- Fuel Cell Cycles
- Industrial Hydrogen, CO₂

- Lowest Cost CO₂ Capture Option
- Competitive with or without CO₂ Capture
CO2 Capture in Power Plants
Relative Economics

Chemical Looping CO2 Avoided Cost: $11-13/ton of CO2

Basis:
- Plant size: 400 MWe
- Steam conditions: 3915 psia/1085 degF/1148 degF/2.5in H2o
- Cost basis: 2006, $US
- Coal cost: 1.5 $/MMBtu
- Levelized capital charge: 13.8%
- Capacity factor: 85%

Comparable range of costs for conventional technologies

Chemical Looping cases

2006 $’s

Cost of Electricity cents/Kw-hr

CO2 Allowance Price ($/Ton CO2 Emitted)

Chemical Looping CO2 Avoided Cost: $11-13/ton of CO2
Significant Volume & Weight Reduction

Air Fired CFB

- Building Volume: 220’
- Boiler/Gasifier Weight: 100%

Chemical Looping Plant

- Building Volume: 140’
- Boiler/Gasifier Weight: 65%
Chemical Looping Technology

Pulverized Coal Power Plant - Retrofit Concepts

Concept 1 – Chemical Looping – CO₂ Free Fuel; Minimum Boiler Modification

Concept 2 – Chemical Looping Oxidizer Replaces / Modifies Boiler
Alstom’s Chemical Looping Pilot Facility (65 kWt)

- Designed and Built by Alstom
- Allows Testing of Individual Loops and Processes
- 3 Year Successful Test Program – Completed
- All Chemistry/Rates Verified
- Phase 3 - Pilot Plant
 - Two Exhaust Fans/Stacks
 - Automatic Solids Transport Controls
Cold Flow Model – Flow Stability, Scale-up
Chemical Looping Kinetics

Chemical Looping - Kinetics Summary

Kinetic Rates exceed Design Requirements
US DOE Phase I, II, III - Accomplishments

• All Milestones Successfully Completed – On-time, On-budget
• Pilot Testing (65 kWt) – Successfully Complete
• 15-foot Cold Flow Model testing completed – Stable Solids Transport achieved
• 40-foot Cold Flow Model – Stability achieved, Scaleup verified
• Internal and ASME/US DOE Peer Reviews Successfully completed
• Alstom’s Phase IVA - Prototype (3 MWt):
 US DOE Cooperative Agreement - Sept, 2008
Chemical Looping Development

• Project Overview

• Technology

• Project Objectives

• Project Methodology

• Future Plans
Chemical Looping Prototype
Phase IVA

Chemical Looping 3 MWt Prototype Facility
Preliminary Concept

- 1000 lb/hr coal flow
- 1st Integrated Operation
- 1st Autothermal Operation

Phase IV Objective:
Obtain the engineering and operating information required to build and operate a reliable, commercial-size demonstration plant.
Chemical Looping Development

- Project Overview
- Technology
- Project Objectives
- Project Methodology
- Future Plans
Phase IVA – Prototype Concept

- Prototype Location – Alstom Power, Windsor, CT.
 - All Equipment Necessary for Viable Demo Design
 - 1000 lb coal / hr – Combustion, Syngas, Hydrogen
 - Design, Construction, Operation, Maintenance, Modification by Alstom
Chemical Looping Development - Phase IVA
Solids Transport Testing

• Prototype Cold Flow Model (CFM)
 – Startup and operating methods
 – Identify/Solve critical technical aspects
 – Improve plant arrangement
 – Assist cost study

• High Solids Load Tests in 40-ft CFM
 – Solids/gas Transport design tool
 – Quantify the key parameters in this region
Chemical Looping Development – Phase IVA
Design/Build/Test Program

• Small-scale Cold Flow Modeling
 – Vessels scaled from the Prototype plant design
 – Control and distribution of solids/gas flow
 – Startup procedures
 – Identify critical areas (e.g. erosion, control) for the prototype plant design
 – Prototype operator training
 – Prototype solids transport problem solving

• Design/Test Prototype plant
 – Complete the design tools for the prototype plant
 – Complete the prototype sizing and selections for all vessels
 – Prototype Operation/Testing/Modification/Development
 – Update commercial economics analysis and specs recheck
Chemical Looping Development

- Project Overview
- Technology
- Project Objectives
- Project Methodology
- Future Plans
Chemical Looping Development

Phases IV, V, VI

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>PDU</td>
<td>Test</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>PDU</td>
<td>Test</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Pilot</td>
<td>EPC</td>
<td>Test</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Prototype</td>
<td>EPC</td>
<td>Test</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Demo</td>
<td>Preliminary Engineering</td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>Commercial</td>
<td>EPC</td>
<td>Operations</td>
<td></td>
</tr>
</tbody>
</table>

Prototype

(1000 lb/coal/hr)
Chemical Looping Development Plan

• Demonstration Plant – Phase V:
 – Objective: Demonstrate Reliability and Performance
 – Electric Utility Sponsor/Existing site – locate during Phase IV
 – 50 to 100 MWe