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PM-2.5 and Coal-Fired Power Plants
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Plume Processes Effect PM Emissions
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Dilution Sampling

• Simulates plume 
processes
• Semi volatile species 

(Organics, Metals)

• Size Distribution

• Advanced 
instrumentation

• Limited data for coal 
emissions

• Complex
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Project Objectives
• Design, construction and evaluation of a portable 

state-of-the-art dilution sampler
• Characterize PM-2.5 emissions from a pilot-scale 

pulverized coal combustor.
• Examine effect of dilution sampling on PM-2.5 

emissions:
• Particle size distribution
• Particle chemical composition
• Particle properties

• Develop dilution sampling methodology for coal-
fired power plants



6

Schematic of Dilution Sampler

Dilution Tunnel (DR 10 – 100)

Residence
Time Tank

(0 – 12 min)

Temp
RH

Venturi
Flowmeter

Orif. Plate

HEPA
Filter

Active
Carbon
Filter

Blower

Temp

Blower

Exhaust

Analysis
Instrumentation

Pump

Flow Control
Valve

Exhaust
Flow Control

Valve

Flow Control
Valve

Heated Inlet

Cyclones

Pre-Diluter

Isokinetic
Nozzle

Exhaust
Duct

Inlet



7

Residence Tank Design
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Pilot-Scale Coal Combustor (CERF)

• Pilot-scale: 50 lbs/hr
(~500,000 Btu/hr)

• Simulates:
•Gas temperature
•Gas composition
•Residence time

of a Utility Boiler
• Eastern Bituminous Coal

(low ash, low S)
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Sampling Locations

Before Bag 
house

After
Bag house
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Residence Time Tank Aerosol Instrumentation
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What is the effect of dilution sampling 
on PM emissions?

• Experiments:
1. Constant residence time vary dilution ratio

2. Constant dilution ratio vary residence time

3. Hot filter samples (EPA method 5)

• Measurements:
• Particle size distribution from 5 nm to 5 microns (TSI 

nano-SMPS, SMPS, APS)

• Mass and composition (Filter packs)
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Typical Particle Volume/Mass Size 
Distribution
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Typical Particle Number Size 
Distributions
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Analysis of Particle Distribution Data

• Normalize to an exhaust basis
• PMnorm = PMmeasured X (DR + 1)

• Coagulation simulations

dN(Di)
dt = N(Di) - Rcoag

Rcoag = Σ Kcoag(Di,Dj)•N(Di)•N(Dj)j

150
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Effect of Dilution Ratio on Size 
Distribution
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Mass Emission Remain Constant With 
Residence Time
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Increasing dilution ratio increases 
particle number
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Changes with increased residence 
time
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Changes in size distribution are 
primarily due to coagulation
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Effect of Bag House on Mass 
Emissions
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Bag house removes nucleation mode
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Conclusions for Particle Size 
Distributions

• Effects of dilution ratio and residence time 
can largely be explained by coagulation
• Higher dilution ratio lowers the coagulation 

rate
• Longer residence time more coagulation

• Bag house removes 10 nm mode
• Dilution sampling has little effect on mass 

emission rates
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Chemical Composition

• What are the effects of dilution sampling, coal 
quality, and operating parameters on PM 
chemical composition?

• Tracers for coal combustion
• Ratio Se, As to SOx
• Spherical Aluminum Silicate Particles
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SEM analysis for Spherical Aluminum 
Silicate (SAS) Particles

SAS Particles

10 µµµµm
SAS particles are unique 
fingerprint for coal 
combustion

Examine effects of coal 
quality and load on SAS 
emissions



26

Future Work

• Chemical composition:
• Focus on semi-volatile metals Se and As used as fingerprints 

for coal combustion
• Single particle measurements:

• Particle classes for source apportionment
• Single particle mass spectrometer; laser induced breakdown 

spectroscopy
• Smog chamber experiments to examine interaction of 

coal boiler exhaust with urban or biogenic plume
• Effect of coal quality and operating conditions on 

emissions


