Assessment of Secondary Coal Combustion Emissions: The TERESA Study

Annette Rohr, Sc.D.
EPRI, Palo Alto, CA

EUEC
January 22, 2004
Primary Objective: Determine the toxicity of realistic coal combustion emissions.

Approach:

- Evaluate toxicity of secondary coal combustion emissions at multiple power plants in the U.S. by exposing laboratory rats to a variety of simulated atmospheric scenarios.

- Determine relative toxicity of coal combustion and mobile source emissions, as well as ambient PM$_{2.5}$ (concentrated ambient particles; CAPs).
Study Design

- **Primary Particles and Pollutants**
 - Mobile Chemical Laboratory
 - 2-Chamber Atmospheric Reaction Simulation System
 - Add OH•, NH₃, HC, light
 - Pollutant monitoring
 - Secondary Particles and Pollutants

- **Power Plant Stack**
 - Coal-Fired Power Plants
 - Different coal types
 - Different plant configurations
 - Mobile Toxicological Laboratory
 - Exposure chamber
 - Toxicological assessments (Stages I and II)
 - Pollutant monitoring
Background and Motivation

• **Key issue**: increase our understanding of the *sources* and *components* of air pollution responsible for health effects.

• Two sources of information exist on the health effects of coal-fired power plant PM:
 • Studies examining the health effects of *components* of coal combustion emissions (e.g., sulfate, sulfuric acid).
 • Studies examining the health effects of *coal fly ash*.
Coal Fly Ash (CFA)

- Mostly intratracheal instillation studies:
 - Reductions in antibody-forming cells in rats (Dogra et al., 1995), and total/vital capacity in guinea pigs (Chen et al., 1990), changes in lung histopathology in hamsters (Wehrer et al., 1979, 1980).
 - 2, 10, and 50 mg of CFA instilled in rats: minor differences between CFA and TiO$_2$ (negative control) groups (Arts, 1993).

- \textit{In vitro} studies: acellular OH generation and cytotoxicity in rat epithelial cells (van Maaenen et al., 1999); decreased phagocytic activity in mouse AM (Fisher and Wilson, 1980); little effect on DNA (Prahalad et al., 2000, 2001), effect seemed to be V- and Ni-mediated; some studies do show genotoxic effects.

- Few inhalation studies:
 - MacFarland et al. (1971) and Alarie et al. (1975) in monkeys and rodents: no unique biological effects from CFA exposure.
 - Rats exposed to CFA (0.6 mg/m3, 4.25 mg/m3) 8 h/day for up to 180 days: no effect in the low exposure group and only minor effects related to BAL macrophages in the high exposure group (Raabe et al. 1982).
 - Hamsters exposed to 2 mg/m3 CFA (inhalation exposures) for 180 days: no change in surfactant properties (Nishimura and Negishi, 1995).
Coal Fly Ash (CFA): Effect of Size and Composition

• Using eastern bituminous coal, PM<2.5 was more cytotoxic and mutagenic than larger fractions, and particle size was inversely related to metal content of the ash (Mumford and Lewtas, 1982).

• CFA from bituminous coals appears to be more toxic than lignite coals (Smith et al., 2000).

• Mice exposed to CFA samples with the highest levels of metals showed the greatest effect on enhanced susceptibility to infection (Hatch et al., 1985).

• Higher metal sulfate ultrafine aerosols from a bituminous coal induced greater effects on pulmonary function in guinea pigs than a lower sulfur coal (Chen et al., 1990).

• Importance of ultrafine fraction??
Elemental Analysis of Ultrafine, Fine, and Coarse Coal Fly Ash (Gilmour et al., in press)

<table>
<thead>
<tr>
<th>Element</th>
<th>MT UF µg/g ash</th>
<th>MT <2.5µm µg/g ash</th>
<th>MT>2.5 µm µg/g ash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>28,500</td>
<td>156,742</td>
<td>222,875</td>
</tr>
<tr>
<td>Al</td>
<td>93,780</td>
<td>103,979</td>
<td>108,800</td>
</tr>
<tr>
<td>Ca</td>
<td>82,900</td>
<td>89,858</td>
<td>115,175</td>
</tr>
<tr>
<td>Fe</td>
<td>6,920</td>
<td>53,929</td>
<td>30,350</td>
</tr>
<tr>
<td>S</td>
<td>39,400</td>
<td>7070</td>
<td>9,130</td>
</tr>
<tr>
<td>Mg</td>
<td>14,600</td>
<td>27,721</td>
<td>31,300</td>
</tr>
<tr>
<td>Ti</td>
<td>1845</td>
<td>6353</td>
<td>6180</td>
</tr>
<tr>
<td>K</td>
<td>1155</td>
<td>9358</td>
<td>5580</td>
</tr>
<tr>
<td>Cl</td>
<td>659</td>
<td>1264</td>
<td>1460</td>
</tr>
<tr>
<td>Ba</td>
<td>16200</td>
<td>2298</td>
<td>1843</td>
</tr>
<tr>
<td>P</td>
<td>10530</td>
<td>1080</td>
<td>979</td>
</tr>
<tr>
<td>Sr</td>
<td>7480</td>
<td>3426</td>
<td>3858</td>
</tr>
<tr>
<td>V</td>
<td>712</td>
<td>208</td>
<td>108</td>
</tr>
<tr>
<td>Ni</td>
<td>330</td>
<td>347</td>
<td></td>
</tr>
<tr>
<td>Nb</td>
<td>910</td>
<td>176</td>
<td>22</td>
</tr>
<tr>
<td>Mn</td>
<td>487</td>
<td>1048</td>
<td>907</td>
</tr>
<tr>
<td>Cd</td>
<td>1620</td>
<td>463</td>
<td></td>
</tr>
<tr>
<td>Se</td>
<td>565</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>Ga</td>
<td>460</td>
<td>83</td>
<td>27</td>
</tr>
<tr>
<td>Cu</td>
<td>420</td>
<td>320</td>
<td>77</td>
</tr>
<tr>
<td>Elements %</td>
<td>22.5</td>
<td>47</td>
<td>54</td>
</tr>
<tr>
<td>Oxygen %</td>
<td>16.5</td>
<td>44.5</td>
<td>45</td>
</tr>
<tr>
<td>Carbon %</td>
<td>unknown</td>
<td>0.4</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Effect of Coal Fly Ash Instillation on PMN Numbers in Mouse Lungs

![Graph showing the effect of different types of particles on neutrophil (PMN) numbers](image-url)

- **Total Cell Number (x10^3)**
- **Type of Particle**
 - Saline
 - M. Coar
 - M. Fine
 - M. UF
 - WK Coar
 - WK Fine
 - Endotoxin

- **Graph Legend**
 - 25 µg
 - 100 µg

- **Statistical Notations**
 - *: Significant difference
 - **: Highly significant difference
Limitations of Coal Fly Ash Studies

• Studies using collected primary CFA (from ESPs or pilot combustors):
 • Low quantities of primary CFA are emitted from U.S. power plants
 • Populations are exposed to secondary PM.
 • Possible differences between collected particles and those that penetrate the ESPs into the ambient environment.
 • Instillation and *in vitro* studies tend to involve very high doses.
 • Possible changes in PM characteristics during storage.

• Inhalation exposure studies:
 • All studies have used pilot combustors: emissions from pilot combustors may differ from full-scale plants due to differences in surface area/volume ratios and therefore time-temperature histories.
Knowledge Gaps

- No information on the toxicity of secondary particles formed through SO_2 conversion in the atmosphere.
- No assessment of the toxicity of actual plant emissions.
TERESA Objectives

Primary Goal:
• Investigate and clarify the impact of the sources and components of PM$_{2.5}$ on human health via a set of realistic animal exposure experiments.

Specific Objectives:
• Investigate the relative toxicity of coal combustion emissions and mobile source emissions, their secondary products, and ambient particles.
• Assess the effect of atmospheric conditions on the formation/toxicity of secondary particles from coal combustion and mobile source emissions.
• Evaluate the impact of coal type and pollution control technologies on emissions toxicity.
• Increase understanding of toxicological mechanisms of PM-induced effects.
Plant Selection

Program currently includes 3 coal-fired plants (with additional plants planned):

2. Southeast: low sulfur (<1%) eastern bituminous coal, no scrubber for post-combustion \(\text{SO}_2 \) removal, with or without selective catalytic reduction (SCR) for NOx removal.

3. Medium-to-high sulfur (>2-3%) eastern bituminous coal, scrubbed unit, with or without SCR.
Atmospheric Reaction Simulation System

• Critical component of TERESA.
Technical Requirements

• Large, stable, and reproducible aerosol mass concentrations for animal exposures.
• Consistent size distribution across exposures.
• Sufficient flow of aerosol for exposure and characterization.
• Stable output in a short period of time.
• Secondary particles generated using typical atmospheric pathways and conditions (temperature, pressure and RH), without incorporation of compounds not present in the atmosphere.
• Aerosol components (SOA, sulfate, metals) in ratios consistent with typical average values in an aged plume.
• Low concentrations of unreacted gases (SO₂, NOx, O₃) during animal exposures.
• Small photochemical chamber for use in mobile laboratory installed in a refurbished bus.
• Minimal particle losses.
Atmospheric Reaction Simulation System

- Two-chamber design.
- Add atmospheric oxidants (OH radicals) to convert SO$_2$ and NOx in stack gas to sulfuric acid and nitric acid.

 Chamber 1: Designed to oxidize 20-35% of SO$_2$ to sulfuric acid with a 60-minute residence time using O$_3$ photolysis as a source of OH radicals. For some exposure scenarios, NH$_3$(gas) will be added to partially neutralize acidic sulfate particle strong acidity.

 Chamber 2: Designed to coat particles with SOA through addition of VOCs (α-pinene) and ozone. Simulates the formation of SOA from the plume mixing with biogenic emissions.

- Sequential approach simplifies chemistry and avoids complex photochemical oxidation of organics.

- Novel “gas-cleaning system” (nonspecific denuder) uses a gas-permeable membrane to removal excess SO$_2$, NOx, ozone, and other pollutant gases while maintaining the secondary particles.
Dual Chamber System

Chamber 1
- UV 313 Lights
- Denuder 1
- Room Fluorescent Lights

Chamber 2
- Denuder 2
- Room Fluorescent Lights
- Dilution
- Animal Exposure

UV 313 Lights
Exposure Scenarios

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Composition</th>
<th>Simulated Atmospheric Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gas- and particle-free air</td>
<td>Sham exposure</td>
</tr>
<tr>
<td>2</td>
<td>Primary (un-aged) emissions diluted to the range of 50 µg/m³ SO₂ using clean air (same dilution as for 3, 4, and 5 below)</td>
<td>Primary stack emissions</td>
</tr>
<tr>
<td>3</td>
<td>Primary emissions + hydroxyl radicals</td>
<td>Aged plume, oxidized stack emissions, sulfate aerosol formation from nucleation</td>
</tr>
<tr>
<td>4</td>
<td>Primary emissions + hydroxyl radicals + ammonia</td>
<td>Aged plume, sulfate aerosol partially neutralized by ammonia</td>
</tr>
<tr>
<td>5</td>
<td>Primary emissions + hydroxyl radicals + ammonia + VOCs</td>
<td>Aged plume, mixture of neutralized sulfate and secondary organic aerosol derived from biogenic emissions</td>
</tr>
</tbody>
</table>

Plus additional Control Scenario: atmospheric components only, no emissions
Exposure Characterization

- PM mass, number, size distribution (including ultrafines)
- PM components:
 - Sulfate, nitrate
 - EC/OC
 - Ammonium
 - Metals
 - Particle strong acidity
 - Selected organics (eg. PAHs)
- Gaseous pollutants:
 - CO
 - NO₂
 - SO₂
 - Ozone
 - NH₃
 - Formaldehyde
Animal Exposure and Toxicological Assessment

- Conducted in separate mobile toxicological laboratory.
- 4-hour exposures, with 1-hour baseline and recovery periods (room air).

Stage I Assessment (normal rats):
- Pulmonary function/breathing pattern
- *In vivo* oxidative stress via chemiluminescence
- Blood cytology (CBC/differential)
- Bronchoalveolar lavage (LDH, βNAG, total protein)
- Pulmonary histopathology

Stage II Assessment (rat MI model; Wellenius *et al.*, 2002):
- Telemetry: cardiac function (ECG, HR, HRV), BP, temperature
- Blood chemistry (endothelin-1, CRP, IL-1, IL-6, TNFα)
- Pulmonary function/breathing pattern
Mobile Source and CAPs Assessment

- Mobile source assessment:
 - Sample diesel and/or gasoline engines (specific age and type TBD).
 - Methods for atmospheric simulation, animal exposure, and toxicological assessment will be completely analogous to the methods used for coal combustion emissions.

- Concentrated ambient particles (CAPs):
 - Use existing data from the Harvard School of Public Health laboratory.

- Compare toxicities of the three particle sources/types.
Status and Schedule

• Laboratory/methods development work almost complete.
• Outfitting of mobile laboratories almost complete.
• Fieldwork at first plant scheduled for early March.