A Joint Experimental/Computational Study of Non-idealities in Practical Rotating Detonation Engines

PI: Mirko Gamba
Co-I: Venkat Raman

Department of Aerospace Engineering
University of Michigan

Kickoff meeting October 5, 2015
UTSR/NETL
Summary

• Title:
 – A Joint Experimental/Computational Study of Non-idealities in Practical Rotating Detonation Engines

• Funding agency:
 – University Turbine Systems Research/NETL
 – Funding Opportunity Number: DE-FOA-0001248
 – Topic Area 2: Pressure Gain Combustion R&D
 – Project manager: David Lyons

• Personnel:
 – PI: Mirko Gamba, University of Michigan
 – Co-I: Venkat Raman, University of Michigan
 – Students currently involved:
 • Fabian Chacon
 • Yasin Abul-Huda
 • TBD
 – Key external collaborators:
 • Dr. John Hoke, Innovative Scientific Solution, Inc. (ISSI)
 • Drs. Adam Holley and Peter Cocks, United Technology Research Center (UTRC)
 • Dr. K. Kailasnath, Navy Research Labs (NRL)
Outline

- Programmatic overview
- Introduction to the problem and general approach
- Experimental activities
- Computational activities
- Interactions and collaborations
Outline

• Programmatic overview

• Introduction to the problem and general approach

• Experimental activities

• Computational activities

• Interactions and collaborations
Overarching objectives

• **Objective 1:**
 Develop canonical and operational RDE configurations, as well as imaging-based laser diagnostics for understanding fuel stratification, leakage, parasitic combustion and detonation structure under non-ideal conditions in RDEs.

• **Objective 2:**
 Develop a comprehensive picture of the fundamental physics governing non-idealities and how they impact RDE performance and operability from both experiments and simulations.

• **Objective 3:**
 Develop detailed computational tools (DNS & LES) for studying detonation wave propagation processes in RDEs.
Expected outcomes

• **Outcome 1:**
 Identify the sources and properties of non-idealities in RDEs, their contribution to loss in pressure gain, and potential design limitations

• **Outcome 2:**
 Detailed experimental tools and measurements (databases) about fundamental aspects of RDEs will become available to the RDE design community.
 – e.g., transfer of techniques and data to UTRC, ISSI, NRL

• **Outcome 3:**
 Detailed computational tools (DNS/LES) as well as combustion models with detailed chemistry for pressure gain combustion will be made available to the RDE design community.
 – e.g., openFoam development of RDE modeling
 – e.g., transfer of detonation computational models to UTRC, ISSI, NRL
Objectives and tasks

A Joint Experimental/Computational Study of Non-idealities in Practical Rotating Detonation Engines

Objective 1
Develop canonical RDE flowfield for laser-diagnostic study of non-idealities in RDE

- **Task 2.1** Investigate degree of unmixedness due to injection and how it affects shock propagation and leakage
- **Task 2.2** Investigate the structure of the detonation wave under non-uniformly mixed, turbulent mixtures

Objective 2
Understand the physics of non-idealities in RDEs and how they impact performance and operability

- **Task 3.1** Investigate and determine how non-idealities affect RDE performance and operability
- **Task 3.2** Investigate how fuel reactivity in non-uniform mixtures affect RDE performance and operability

Objective 3
Develop DNS/LES combustion models for prediction of detonation wave propagation

- **Task 4.1** Develop DNS capability for turbulent detonation of fuel/air mixtures
- **Task 4.2** Conduct DNS of configurations replicating the linearized RDE analogue
- **Task 4.3** Develop LES models for turbulence generation and combustion in the presence of detonation waves
- **Task 4.3** Conduct LES analysis of RDEs to understand the effect of non-idealities on performance and operability
Objectives and tasks

Objective 1
Develop canonical RDE flowfield for laser-diagnostic study of non-idealities in RDE

- **Task 2.1** Investigate degree of unmixedness due to injection and how it affects shock propagation and leakage
- **Task 2.2** Investigate the structure of the detonation wave under non-uniformly mixed, turbulent mixtures

Objective 2
Understand the physics of non-idealities in RDEs and how they impact performance and operability

- **Task 3.1** Investigate and determine how non-idealities affect RDE performance and operability
- **Task 3.2** Investigate how fuel reactivity in non-uniform mixtures affect RDE performance and operability

Objective 3
Develop DNS/LES combustion models for prediction of detonation wave propagation

- **Task 4.1** Develop DNS capability for turbulent detonation of fuel/air mixtures
- **Task 4.2** Conduct DNS of configurations replicating the linearized RDE analogue
- **Task 4.3** Develop LES models for turbulence generation and combustion in the presence of detonation waves
- **Task 4.3** Conduct LES analysis of RDEs to understand the effect of non-idealities on performance and operability

RDE physics
- Non-idealities
- Performance
- Operability

Experimental tools

Computational tools
Timeline of the project

<table>
<thead>
<tr>
<th>Task</th>
<th>Name</th>
<th>Start</th>
<th>Finish</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
</tr>
<tr>
<td>Task 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>Project meeting and planning</td>
<td>10/15</td>
<td>09/18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Project meetings and progress report</td>
<td>10/15</td>
<td>09/18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>Study of non-idealities in detonation waves</td>
<td>10/15</td>
<td>12/17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Mixing study due to injection and shock interaction</td>
<td>10/15</td>
<td>12/16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Detonation wave structure</td>
<td>04/16</td>
<td>12/17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>RDE performance and operability under non-idealities</td>
<td>10/15</td>
<td>09/18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Effects on non-idealities in RDE operability</td>
<td>10/16</td>
<td>09/18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Effect of fuel reactivity and non-idealities</td>
<td>07/16</td>
<td>09/18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>Develop LES combustion models for detonations</td>
<td>10/15</td>
<td>09/18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>DNS for turbulent detonation</td>
<td>10/15</td>
<td>12/16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>DNS replicating detonation in linearized RDE</td>
<td>04/16</td>
<td>06/17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>LES models for turbulent detonation</td>
<td>07/18</td>
<td>09/17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>LES analysis of RDE performance</td>
<td>04/18</td>
<td>09/18</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Outline

• Programmatic overview

• Introduction to the problem and general approach

• Experimental activities

• Computational activities

• Interactions and collaborations
Overview of RDE operation and Pressure Gain (PG)

From:
Schwer D. A. and Kailasanath K., AIAA 2010-6880
RDE flowfield (unwrapped)

From: Nordeen et al., AIAA 2011-0803
Thermodynamics of RDE and Pressure Gain

Detonation pressure gain (constant volume) heat release

Constant pressure heat release based cycle

From: Schwer D. A. and Kailasanath K., AIAA 2010-6880
(Some) Practical challenges

- Detonation initiation
- Detonation sustainment
- Produce and maintain pressure gain
- Injector design
 - Mixing, minimize pressure drop, prevent back-flow
- Integration with turbomachinery (compressor/turbine)
 - Unsteady operation
- (High-frequency) unsteady loads (mechanical/thermal)
Non-idealities and loss of pressure gain

- **Detonation non-idealities**
 - Incomplete fuel/air mixing
 - Fuel/air charge stratification
 - Mixture leakage (incomplete heat release)
 - Parasitic combustion:
 - Premature ignition (e.g., burnt/unburnt interface)
 - Stabilization of deflagration (flame)
 - Detonation-induced flow instabilities
 - Richtmyer-Meshkov (R-M) instability
 - Kelvin-Helmholtz (K-H) instability
- **They lead to loss in pressure gain**
 - Linked to loss of detonation propagation
- **Additional losses exist during flow expansion**
 - Secondary shock and (multiple) oblique shock
 - Flow instabilities (e.g., K-H instability)
 - Mixture leakage through burn/unburnt interface
Past/current analysis/investigation approach

- Past/current approach is based on **global performance assessment**

- Experimentally:
 - Global performance assessment
 - Low-fidelity and/or global metrics
 - Pressure measurements
 - Luminosity-based analysis (optical access is a challenge!)
 - Parametric study
 - Variation with flow rate, (global) equivalence ratio, fuel, pressure
 - Injector design / annulus / exhaust flowpath testing

- Prediction/computation
 - Euler solver or **limited viscous** effects modeling
 - One-dimension, perfect mixture
 - Single-step reaction
 - Induction-time based combustion models
 - Neglect mixing, three-dimensional **viscous effects and turbulence**
Our approach: a multi-level physics study

Practical RDE

Unit-physics decomposition

Diagnostics
- Laser-based imaging
- Mixing measurement
- Detonation structure
- Temperature and species imaging

Injection & mixing
- Free single injector
- Free multiple injection
- Confined multiple injection
- Shock-induced mixing
- DNS/LES modeling
- Experiments

Turbulence & detonations
- Linear analogue
- Detonations in stratified mixtures
- DNS/LES modeling
- Experiments

Detailed modeling
- Variable mixture ignition model
- Homogeneous reactor model with tabulated ignition times
- Non-equilibrium
Outline

• Programmatic overview

• Introduction to the problem and general approach

• Experimental activities

• Computational activities

• Interactions and collaborations
Experimental multi-level approach

RDE full system:
- Link between mixing and performance
- Design from ISSI/AFRL

Linearized analogue:
- Detonation structure
- Detonation/turbulence interaction
- Detonation in stratified mixtures
- Design from ISSI/AFRL

Single or multiple injectors:
- Mixing studies
- Shock-induced mixing
- Our starting point
Shock-induced mixing: detonation/shock analogy

Detonation

Shock analogy

From: Schwer D. A. and Kailasanath K., AIAA 2010-6880
Scaling of detonation/shock analogy

![Diagram showing the scaling of detonation/shock analogy]

- **Density Ratio Ambient/Crossflow** vs **Wave Speed (km/s)**
 - Normal Shock
 - Det H$_2$/Air ($\phi = 1$)
 - Det CH$_4$/Air ($\phi = 1$)

- **Induced Speed (km/s)** vs **Wave Speed (km/s)**
 - Normal Shock
 - Det H$_2$/Air ($\phi = 1$)
 - Det CH$_4$/Air ($\phi = 1$)
Scaling of detonation/shock analogy

Typical RDE operation

Normal shock

Wave Speed (km/s)

Momentum Flux Ratio

Wave Speed (km/s)
Shock-induced mixing in turbulent jets

• Flexible configuration
 – Single isolated injector
 – Multiple isolated injectors
 – Confined multiple injectors
 – Different injector configurations can be tested conveniently

• Well-suited for controlled unit-physics experiments
 – Quantitative mixing measurements
 – Flexibility in range of conditions
 • Shock strength
 • Injection details (speed, configuration, molecular weight)
 – What learnt here can be extended to the linearized RDE
Shock-induced mixing in turbulent jets

- Flexible configuration
 - Single isolated injector
 - Multiple isolated injectors
 - Confined multiple injectors
 - Different injector configurations can be tested conveniently

- Well-suited for controlled unit-physics experiments
 - Quantitative mixing measurements
 - Flexibility in range of conditions
 - Shock strength
 - Injection details (speed, configuration, molecular weight)
 - What learnt here can be extended to the linearized RDE
Shock-induced mixing in turbulent jets

- Flexible configuration
 - Single isolated injector
 - Multiple isolated injectors
 - Confined multiple injectors
 - Different injector configurations can be tested conveniently

- Well-suited for controlled unit-physics experiments
 - Quantitative mixing measurements
 - Flexibility in range of conditions
 - Shock strength
 - Injection details (speed, configuration, molecular weight)
 - What learnt here can be extended to the linearized RDE
Shock-induced mixing in turbulent jets

- Flexible configuration
 - Single isolated injector
 - Multiple isolated injectors
 - Confined multiple injectors
 - Different injector configurations can be tested conveniently

- Well-suited for controlled unit-physics experiments
 - Quantitative mixing measurements
 - Flexibility in range of conditions
 - Shock strength
 - Injection details (speed, configuration, molecular weight)
 - What learnt here can be extended to the linearized RDE
Shock-induced mixing in turbulent jets

- Flexible configuration
 - Single isolated injector
 - Multiple isolated injectors
 - Confined multiple injectors
 - Different injector configurations can be tested conveniently

- Well-suited for controlled unit-physics experiments
 - Quantitative mixing measurements
 - Flexibility in range of conditions
 - Shock strength
 - Injection details (speed, configuration, molecular weight)
 - What learnt here can be extended to the linearized RDE
Shock-induced mixing in turbulent jets

• Flexible configuration
 – Single isolated injector
 – Multiple isolated injectors
 – Confined multiple injectors
 – Different injector configurations can be tested conveniently

• Well-suited for controlled unit-physics experiments
 – Quantitative mixing measurements
 – Flexibility in range of conditions
 • Shock strength
 • Injection details (speed, configuration, molecular weight)
 – What learnt here can be extended to the linearized RDE
Shock-induced mixing in turbulent jets

- Shock wave from shock tube
- Laser sheet forming optics
- Camera
Interaction of shock wave with turbulent jet

- Detonation-induced mixing analogue
- Visualization data
 - 100 kHz movie with 300 ns exposure (shock smears by 0.13 pixel)
 - Injection of H₂ into still air subject to a Mach 1.39 shock wave
 - Played back at 5 frames/second
 - Elapsed time 0.5 ms (50 frames)
Interaction of shock wave with turbulent jet

$M = 1.39$

Planar shock

$u = 194 \text{ m/s}$

$\rho_j/\rho_1 = 1.7$

$u_j/D \sim 1/12$

$u_j/u \sim 1/5$

$\rho_j/\rho_2 \sim 1/24$

H_2

$u_j \sim 40 \text{ m/s}$

Density-driven instability (e.g., R-M instability)
Experimental multi-level approach

RDE full system:
• Link between mixing and performance
• Design from ISSI/AFRL

Linearized analogue:
• Detonation structure
• Detonation/turbulence interaction
• Detonation in stratified mixtures
• Design from ISSI/AFRL

Single or multiple injectors:
• Mixing studies
• Shock-induced mixing
• Our starting point
Suite of diagnostic techniques for the study of RDE physics

- **Traditional techniques:**
 - Pressure, heat flux, flame chemiluminescence
 - Schlieren imaging

- **Laser-based imaging diagnostics:**
 - Planar laser-induced fluorescence (PLIF) mixing and flame marker
 - Two-color toluene PLIF thermometry and mixing (non-reacting) imaging
 - OH/CH$_2$O/CH/NO PLIF imaging
 - e.g., Simultaneous OH/CH$_2$O PLIF imaging for flame structure and heat release distribution study in premixed combustion
 - Rayleigh scattering imaging (thermometry in reacting flows)

- **Some examples follow**

 ![Simultaneous OH/CH$_2$O PLIF imaging in inverted oxy-fuel coaxial non-premixed CH$_4$ flames](image-url)
Mixing and combustion measurements in compressible turbulence

Study of transverse jets in supersonic crossflow - reacting

Distribution of OH radical (flame marker)

Side-view centerplane

Plan-view 1mm off the wall
Mixing and combustion measurements in compressible turbulence

Study of transverse jets in supersonic crossflow – non-reacting mixing using toluene PLIF thermometry

$$J = \frac{\rho U}{\rho U'} = \frac{\gamma_{CS}}{\gamma_{CF}} \frac{1}{M_s^2}$$

$$M \approx 2.3 \quad T \approx 500 \text{ K} \quad p \approx 1 \text{ atm}$$

Seeded N₂

Bow shock

Mixing layer

Acoustic waves

LIF signal

Pure jet fuel

Jet entrainment

Wake

H₂ injection

H₂ (MW=2)

He (MW=4)

He/Ar (MW=9)

N₂ (MW=28)

Ar (MW=40)

J, s and r are coupled

MW: molecular weight

Momentum flux ratio: $J = \frac{\rho U^2}{\rho U'^2} = \frac{\gamma_{CS}}{\gamma_{CF}} \frac{1}{M_s^2}$

MW: molecular weight

$T_0 = 29$ K

ρ_s constant (±10%)

W variable

$r_s \approx 200,000$ (He) – 600,000 (N₂)

$M \approx 2.3$

$T \approx 500$ K

$p \approx 1$ atm

Seeded N₂

$M \approx 2.3$

Observations:

- $T \approx 500$ K
- $p \approx 1$ atm
- Seed N₂

Steady State

Mach Number

Temperature

H₂ injection

N₂ injection

Plume

Wake
Flame structure in scramjet model, (H2/air at $\phi = 0.23$)
Outline

• Programmatic overview
• Introduction to the problem and general approach
• Experimental activities

• Computational activities
• Interactions and collaborations
Computational issues in RDEs

• RDEs driven by strong discontinuities
 – Shocks, pressure jumps, strong velocity gradients
 – Numerically challenging

• Coupling to turbulence and inhomogeneities
 – Small-scale gradients in concentration, temperature etc.
 – Ability to capture strong jumps and small-scale features
 • Low dispersion and dissipation in numerical tools

• Combustion modeling
 – How to describe combustion in detonation-based devices?
Numerical capabilities

• Prior work in high-speed shock-containing flows
 – Low dispersion numerics
 – Near-shock resolution using specialized non-oscillatory schemes
 – Central schemes to preserve turbulent kinetic energy away from shock
 – Shock region determined using numerical “sensors”
 • Strain rates and pressure gradients used as sensors
Current focus

• Need to use complex geometries to model injectors
 – Need unstructured and complex mesh capabilities

• Current work
 – Move solvers to open source framework
 – Ability to directly import CAD files
 – Easily portable across machines
 – Most importantly, can be easily shared with researchers
 • No IP issues on code transfer
 • Preliminary solvers developed using NETL-funded work
OpenFOAM capabilities

- Used for low-speed reacting flows
 - Multiple combustion models implemented
 - Ability to handle detailed chemical kinetics
 - Tested for Euler-type high-speed flows
 - Currently being ported to Siemens Inc.; Collaborations with GE and Rolls Royce
Combustion modeling

• If detonation is uniform, only time-lag model is needed
 – Only valid under ideal conditions
 – Injection leads to spatially non-uniform mixing
 – Variations in fuel/air composition
 • Leads to non-uniform detonation
 • Generation of baroclinic torque and vorticity generation
 • Enhances the effect of non-uniform mixtures

• Combustion modeling focus
 – Develop a variable mixture ignition model
Combustion modeling focus

• Low-speed models are not accurate
 – Turbulent mixing dominated ignition

• RDEs
 – Pressure-driven detonation
 • Induction time dependent on pressure response of fuel
 – Response of variable equivalence ratio mixing
 • Non-uniformity in fuel-air ratio can lead to variable delays in ignition
 • Formation of cellular shock structures
 • Loss of efficiency and fuel leakage

• First approach
 – A local mixture dependent ignition time
 – Use homogeneous reactor configuration to tabulate ignition times
Additional issues

• Strong detonation waves can introduce internal energy nonequilibrium
 – Internal modes cannot be described by Boltzmann distribution
 – Strongly affects ignition and combustion processes

• Our group has been working on nonequilibrium effects through a simultaneous AFOSR-funded effort
 – Use ab-initio computational chemistry to understand effect of nonequilibrium
 – This effort will be leveraged here
 – Strong interest from NRL (Dr. Kailasnath)
External collaborations

• Initiating collaboration with NRL
 – Get input on code development
 – Provide information on nonequilibrium and combustion modeling

• University of Maryland (Prof. Yu)
 – Use existing experimental data for initial validation
 – Provides stop-gap validation data until UM experiments come online

• UTRC and ISSI/AFRL
 – Develop and transfer code and modeling expertise
 – Interact to work on injector modeling
Outline

• Programmatic overview
• Introduction to the problem and general approach
• Experimental activities
• Computational activities
• Interactions and collaborations
Interactions, collaborations and synergies

• Strong coupling between experiments and computations
 – Model development and validation
 – Experiment design and understanding
 – Combined investigation of the physics of detonations under turbulent mixing, incomplete fuel/air mixing, stratification

• Key external collaborations
 – ISSI/AFRL (Dr. John Hoke) on RDE and linearized RDE analogue operation, performance and modeling
 – UTRC (Drs. Adam Holley and Peter Cocks) on modeling and non-ideal behavior
 – Initiating collaboration with NRL (Dr. Kailasnath) on code and combustion model development

• Other collaborations/interactions
 – University of Maryland (Prof. Yu) on initial use of existing experimental data for initial validation
 – Interested in establishing interaction with NETL (Dr. Ferguson)
Questions?