FOIL GAS BEARING SUPPORTED HIGH-SPEED CENTRIFUGAL BLOWER

Sponsor: Department of Energy

Participants: R&D Dynamics SECA Members

Presented by: Dr. Giri L. Agrawal

BLOWER NEEDED FOR

Recycling SOFC Anode Exhaust Gas Back
 To Pre- Reformer

Resulting In ----

Potential for Lower Overall System Cost

HIGH-SPEED CENTRIFUGAL BLOWER PROVIDES

High Efficiency

Potential for Low Manufacturing Cost

- Less material
- Few components
- Part Load Capability / Variable Speed

FOIL BEARING PROVIDES

- ✓ Oil Free Operation
- High Rotational Shaft Speed
- ✓ Maintenance Free
- ✓ High Reliability
- High Temperature Capability

TECHNICAL ISSUES

- Design for Low Cost Manufacturability
- Design for scalability
- No gas leakage
- No sulfur leak into fuel stream
- No free silica exposure into fuel stream
- No heavy metal leakage into fuel stream
- ✓ DC voltage operation flexibility below 150 VDC
- ✓ Design for 40,000 hour lifetime
- ✓ Flexible on maintenance interval ~ 10,000 HRS.

TECHNICAL ISSUES (Cont.)

- No cooling available from system other than process fluid
- All power consumption needs to include cooling
- Purge gas is undesirable
- Blower shaft temperature may be below water dew point
- Mechanical type seals do not last
- Hydrogen around motor may be safety concern
- Corrosion/carbon deposition issues with high temperatures
- Metal out gassing at high temperatures e.g. chrome

R&D OBJECTIVES

Design and Demonstrate a Foil Gas Bearing
 High-Speed Centrifugal Blower that Resolves
 All Technical Issues.

PHASE I OBJECTIVES

Preliminary Design of Prototype Blower
 Breadboard Testing of Key Technology

PHASE II OBJECTIVES

Detailed Prototype Design

Manufacture Prototype

Test Prototype

PRELIMINARY SPECIFICATION

- Inlet Temperature
 Inlet Pressure
 Pressure Rise
 Flow
 Nominal Gas Composition
- ✓ Overall Efficiency
 ✓ Turn-down Ratio
 ✓ Thermal Cycles
 ✓ Unit Cost (50,000 units/year)

600 to 850°C **Atmospheric** 4 to 10 in. of H_2O 100 slpm 46 slpm H₂O, 27 slpm CO₂, 20 slpm H₂, 7 slpm CO $\geq 40\%$ 5 to 2 (Variable Speed) > 30 Low

PROTOTYPE BLOWER CONCEPT

PROTOTYPE BLOWER CONCEPT

FEATURES OF CONCEPT

- Sealed Rotor
- Shaft System Supported Radially by Pair of Hydrodynamic Foil Journal Bearings
- Aerodynamic and Applied Thrust Loads Borne by Pair of Opposing Hydrodynamic Foil Thrust Bearings
- Motor Driven by an Integrated Variable Frequency Drive (inverter)
- Internal Process Gas Cooling

PHASE I WORK PLAN

- Prototype Unit
 - Preliminary design
 - Motor design
 - Rotor design
- Breadboard Unit
 - Test sealed rotor motor design

ACCOMPLISHMENTS

- Prototype Unit Concepted
- Breadboard Unit
 - Existing hardware identified
 - Sealed rotor motor design in progress

PROTOTYPE UNIT MOTOR DESIGN

Number of Poles Rated Output Rated Speed Rated Voltage Rated Torque Rated Current Stator Resistance Stator Inductance

2 100 watts 75,000 rpm $24 V_{rms}$.013 N*m $4.5 A_{rms}$.066 ohms L-L .067 mH

PROTOTYPE UNIT MOTOR DESIGN (cont.)

Motor Rotor

	 Magnet Inside Diameter 	0.170 ii			
	 Magnet Outside Diameter 	0.650 ii			
	- Sleeve Thickness	0.030 ii			
	- Radial Air Gap	0.020 ii			
	 Magnet Length 	0.600 ii			
S	Stator				
	 Stator Can Thickness 	0.010 ii			
	 Lamination Inside Diameter 	0.770 ii			
	- Lamination Outside Diameter	2.500 ii			
	 Stack Length 	0.600 ii			

n

PROTOTYPE UNIT MOTOR DRIVE (cont.)

- DC Supply Voltage
- Peak Current
- Maximum Continuous Current
- Minimum Load Inductance
- Switching Frequency
- Bandwidth
- Temperature Range
- Rotor Position Feedback
- Over-Voltage Shutdown
- Over-Temperature Shutdown
- Size
- Weight

40-190 Vdc 25 amps 12.5 amps 250 µH 22 kHz +15% 2.5 kHz0° to 65°C Hall Effect Sensor 195 Vdc >65°C 7.35 x 4.40 x 1.00 inches 1.5 lb.

PROTOTYPE UNIT ANALYSIS in PROGRESS

- Critical Speed Analysis
- Forced Response
- Internal Cooling
- Thrust Balance
- Heat Transfer
 - Conduction
 - Convection
 - Radiation
- Motor Magnetic Analysis

PROTOTYPE UNIT IMPELLER AERODYNAMIC DESIGN

Pressure Ratio	1.025	
Isentropic Power	16 watts	
 Compressor Isentropic Efficiency 	78 %	
Compressor Power	21 watts	
Speed	75,000 rpm	
Specific Speed	80	
Flow Coefficient	.0496	
Pressure Coefficient	.551	

PROTOTYPE UNIT INTERNAL COOLING FAN AERODYNAMIC DESIGN

Inlet Temperature	277	°F
Inlet Pressure	14.7	psia
Mass Flow Rate	0.5	g/s
Pressure Rise	6.6	in. of H_2O
Isentropic Power	1.2	watts
Compressor Isentropic Efficiency	78	%
Compressor Power	1.6	watts
Impeller Outside Diameter	0.70	in
Speed	76,000	rpm
Specific Speed	80	

APPLICABILITY to SOFC COMMERCIALIZATION

- SOFC systems that incorporate some recycling of the anode exhaust gas, which is mixed with incoming fresh fuel prior to entering the pre-reformer, have a higher efficiency and offer the potential for lower overall system cost
- Superior Blower Technology
 - No Maintenance
 - Oil Free
 - Efficient
- Cost Competitive
 - Less then \$50 per SOFC kW

PLANNED ACTIVITIES for NEXT 6 MONTHS

- Complete Prototype Unit Design
- Complete Breadboard Design
- Fabricate Breadboard
- Test Breadboard
- Prepare Phase II Project Plan
- Final Report

SUMMARY

Foil Gas Bearing Supported High-Speed Centrifugal is the Best Technology for SOFC

- This Technology
 - Will resolve key technical issues
 - Will help SECA members
 - to achieve high system efficiency
 - to obtain low cost blower

