Development of Modified Nickel-Based Compositions For On-Anode Reforming

David King, Yong Wang, Hyun-Seog Roh, Cathy Chin
SECA Core Technology Program Peer Review
Lakewood, CO
October 25, 2005
Outline of Presentation

- On-anode reforming—incentives and challenges
- FY05 areas of research
- Review and analysis of recent progress
- Conclusions
- Future work
Incentives for On-Anode Reforming

- **Increase efficiency**
 - Utilize heat generated from fuel cell energy losses
 - Reduce cell cooling requirements—less excess cathode air
- **Reduce system steam requirements**
 - Utilize H_2O generated from electrochemical oxidation of H_2
- **Use synergy of electrochemical oxidation of H_2 and CO with CH$_4$ reforming**
 - Increase methane conversion by shift of equilibrium
 - Reduce reforming temperature
- **Eliminate or reduce size of high temperature external reformer**
 - Reduce capital investment and operating costs
Challenges in On-Anode Reforming

- Deactivation through carbon formation
 - Hinders operation at desired low steam-to-carbon (S/C) ratios
- Kinetic mismatch of Ni-YSZ reforming and electrochemical oxidation
 - Reforming rate fast relative to electrochemical oxidation
 - Possible large endotherm at leading edge of cell
 - Potential for warping or cracking cell

Our work is aimed at finding solutions for above challenges
FY05 Research Accomplishments

- Obtained baseline data on Ni-YSZ for methane and synthetic natural gas steam reforming
 - Activity, activation energy, feed component dependence
 - Activity maintenance—identified sintering effects from H₂O/CH₄ feed
- Evaluated modified Ni-YSZ for reduced carbon susceptibility and low S/C operation
 - Identified MgO modification of Ni-YSZ as stabilizer to Ni sintering and to carbon susceptibility
 - Continuing to assess need for pre-reforming of natural gas feedstock
- Evaluated Cu-modified Ni-YSZ for methane steam reforming activity reduction
 - Achieved activity reduction by more than one order of magnitude compared with Ni-YSZ at 700°C
Catalyst Testing Procedures

- **Reactor**
 - Tubular quartz, 4mm i.d.

- **Catalyst**
 - Typical charge 30 mg, 80-100 mesh
 - Dilution with 300 mg YSZ to minimize bed temperature endotherm
 - Pretreatment: typically 700°C for 1 hour in pure H₂

- **Feed**
 - Typically 3:1 S/C with variable H₂
 - N₂ or He diluent included to allow feed flexibility
 - Maintain constant residence time regardless of feed ratio
 - Natural gas: 96% CH₄, 3% C₂H₆, 1% C₃-C₄
 - Space velocity (GHSV): cc feed/g cat-h
Catalyst Preparation Methods

- Ni-YSZ
 - Standard material: NiO milled with YSZ and calcined at 1375°C

- Ni-MgO and Ni-Cu
 - Standard material: glycine nitrate preparation
 - Nitrate salts admixed followed by GN combustion, 800°C calcination
 - Alternate: milling of separately GN nitrate prepared NiO, MgO
 - For Ni-Cu: generally tested without added YSZ
 - Alternate preparations: impregnation of Ni (GN) by Cu or Mg nitrate
 - Modified materials: vary post-calcination temperature, up to 1375°C
Ni-YSZ Powder Catalyst Testing
Ni-MgO-YSZ Powder Catalyst Testing
Ni-Cu Powder Catalyst Testing
Ni-YSZ Exhibits Initial Deactivation But Activity Eventually Stabilizes

GHSV = 667K; S/C/H₂/He = 3/1/1/5; T=700°C

CH₄ Conversion vs. TOS (h)
Deactivation of Ni-YSZ is Reproducible

Methanation Activity Comparison

- Run 2 (XCH4)
- Increase SV to 667 K
- Run 1 (XCH4)

GHSV = 167K
GHSV = 667K
CO Methanation Provides Quantification of Activity Loss

Activation Energy
NiO-YSZ (Baker) 98.06 kJ/mol
NiO-YSZ spent 75.5 kJ/mol (deactivated)

Based on methanation results, assuming all Ni sites has the same turnover number for 30 mg of NiO-YSZ:

~ 12.7 % surface Ni remained after deactivation

Loss of methanation activity parallels steam reforming deactivation
Typical Treatments for Carbon Removal Do Not Regain Activity

SV=667 k ml/g-h, T=700C, H₂O/CH₄/H₂/He=3/1/1/5
Lined-out Ni-YSZ Shows Temperature Dependence Typical of Ni Catalysts

Initial Conditions: \(T = 675^\circ C, \text{GHSV}=334K \text{ ml/(h*g)}, \text{S/C/H}=3:1:1 \)

\[E_a = 26.93 \text{ kcal/mol} \]
Pretreatment History Impacts on Ni-YSZ Lined Out Activity

<table>
<thead>
<tr>
<th>Catalyst Pretreatment</th>
<th>Gas composition S/C/H</th>
<th>GHSV (space velocity)</th>
<th>Lined-out conversion, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>700°C in H₂, 1h</td>
<td>3/1/6</td>
<td>326K</td>
<td>15</td>
</tr>
<tr>
<td>700°C in H₂, 1h</td>
<td>3/1/6</td>
<td>328K</td>
<td>12.5</td>
</tr>
<tr>
<td>700°C in H₂, 1h</td>
<td>3/1/3</td>
<td>328K</td>
<td>14.0</td>
</tr>
<tr>
<td>700°C in H₂, 1h</td>
<td>3/1/1</td>
<td>334K</td>
<td>12.7</td>
</tr>
<tr>
<td>700°C in H₂/H₂O, 7h; 700°C in H₂, 1h</td>
<td>3/1/6</td>
<td>334K</td>
<td><11</td>
</tr>
</tbody>
</table>

S/H₂ ratio has little impact on lined out conversion

H₂O/H₂ treatment has greater effect

Average turnover rate = 0.194 moles CH₄/g cat-h at 700°C
(exceeds literature value 0.02 moles CH₄/g cat-h at 700°C (Lee et. al., I&EC Research 1990, 29(5), 766-773))
Equilibrated Ni-YSZ Shows Stability Toward Synthetic Natural Gas

Initial GHSV = 667 K, S/C/H_2/He = 3/1/1/6, 700°C

No carbon observed in catalyst bed at end of run
Ni-YSZ Methane Steam Reforming Powder Tests--Conclusions

- Initial activity decline, possibly due to sintering or restructuring facilitated by H₂O/H₂*
- Catalyst achieves stable activity (equilibrates) after several to 10’s of hours
- Kinetic parameters for lined-out Ni-YSZ consistent with results from supported Ni catalysts
 - Activation energy ~27 kcal/mol
 - First order in CH₄; zero order in H₂O for S/C>1

Ni-YSZ Powder Catalyst Testing
Ni-MgO-YSZ Powder Catalyst Testing
Ni-Cu Powder Catalyst Testing
Effect of Addition of MgO on Stability of Ni-YSZ Anode Catalyst (GN Method)

800°C Calcination, 700°C, 646K ml/h-g, S/C/H = 3/1/0.1

The diagram shows the conversion (%) over time (min) for Ni0.8Mg0.2O-YSZ (GN) Prepared together and Ni-YSZ (GN).
CH₄ Conversion Over 0.8Ni 0.2MgO-YSZ
Shows Stability at S/C = 1
WHSV = 701K, S/C/H (Initial) = 3/1/0.1, 670°C,

Equilibrium conversion

- Change to 2:1 S/C
- Change to 1:1 S/C
- Shutdown/Restart
- Change to 0.5:1 S/C
Method of Addition of MgO to Ni-YSZ Affects Catalyst Activity and Stability

<table>
<thead>
<tr>
<th>Catalyst Composition</th>
<th>Pretreatment</th>
<th>GHSV</th>
<th>Conversion, %</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni-YSZ</td>
<td>1375C calcine; 700C in H₂, 1h</td>
<td>621K</td>
<td>12-15</td>
<td>Decrease to line out</td>
</tr>
<tr>
<td>NiO 0.8-MgO 0.2 GN-YSZ</td>
<td>800C calcine; 700C in H₂, 1h</td>
<td>646K</td>
<td>72</td>
<td>Increase to line out, stabilized high activity</td>
</tr>
<tr>
<td>NiO 0.8-MgO 0.2 GN-YSZ; Ni and Mg GN separately, mechanically mixed</td>
<td>800C calcine; 700C in H₂, 1h</td>
<td>626K</td>
<td>≤41</td>
<td>Decrease to line out, but not fully lined out at 13h</td>
</tr>
<tr>
<td>Ni-YSZ impregnated Mg nitrate</td>
<td>800C calcine; 700C in H₂, 1h</td>
<td>636K</td>
<td><15</td>
<td>Decrease to line out, similar to Ni-YSZ</td>
</tr>
<tr>
<td>NiO 0.8-MgO 0.2 GN-YSZ</td>
<td>1100C calcine; 700C in H₂, 1h</td>
<td>164K</td>
<td>9</td>
<td>Conversion increases to 45% at 655K at 800C</td>
</tr>
</tbody>
</table>
Ni-MgO-YSZ Methane Steam Reforming Powder Tests--Conclusions

- MgO shows promise as additive for activity stabilization and carbon control
 - Finely dispersed MgO (20%) in Ni shows stable (high initial) activity
 - Well-dispersed MgO retards Ni sintering/restructuring in H₂O/H₂
 - Stable CH₄ reforming obtained at S/C = 1 for ~20 hours
- Method of MgO introduction is important for catalytic performance
 - Activity and stability observed in the following order:
 \[\text{NiO-MgO(GN)-YSZ} > \text{NiO (GN) + MgO (GN)-YSZ} > \text{Ni-YSZ + MgO (impreg)} \]
- Calcination temperature affects performance of Ni-MgO-YSZ
 - “NiMgO₂” solid solution forms at or below 1100°C
 - Activity slowly increases with time as Ni becomes reduced and available
Ni-YSZ Powder Catalyst Testing
Ni-MgO-YSZ Powder Catalyst Testing
Ni-Cu Powder Catalyst Testing
98%Ni-2%Cu (GN) After 1375°C Calcination Shows Loss of Cu Efficacy

\[T_{\text{init}} = 750^\circ\text{C}; \text{S/C/H} = 3/1/1; \text{WHSV}_{\text{init}} = 81,700 \]

\[\text{Ea} = 32 \text{ kcal/mol}; \text{compare with 12\% conversion at 667K GHSV for Ni-YSZ} \]

Loss of CuO by evaporation at 1375°C implicated
Catalyst with an initial composition of 80%Ni-20%Cu (GN) calcined at 1375°C maintains reduced activity. GHSV = 82,000; Tinit = 750°C; S/C/Hinit = 3/1/1

Ea = 36.3 kcal/mol; compare 700°C result with 12% conversion at 667K GHSV for Ni-YSZ. Some Cu retained following 1375°C calcination.
Cu Addition Method and Pretreatment Affect Ni Activity

<table>
<thead>
<tr>
<th>Cu Content and Prep Method</th>
<th>Calcination-Reduction</th>
<th>Temp, C</th>
<th>Space Velocity, K</th>
<th>CH₄ Conversion, %</th>
<th>Normalized Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2% Cu; GN</td>
<td>800C 4h-700C 1h</td>
<td>700</td>
<td>312</td>
<td>1.5</td>
<td>0.093</td>
</tr>
<tr>
<td>2% Cu; GN</td>
<td>800C 4h-900C 3h</td>
<td>700</td>
<td>83</td>
<td>12.5</td>
<td>0.21</td>
</tr>
<tr>
<td>2% Cu; GN</td>
<td>1375C 1h-700C 1h</td>
<td>700</td>
<td>163</td>
<td>23</td>
<td>0.81</td>
</tr>
<tr>
<td>20% Cu; GN</td>
<td>800C 4h-700C 1h</td>
<td>750</td>
<td>81</td>
<td>1.9</td>
<td>0.012</td>
</tr>
<tr>
<td>20% Cu; GN</td>
<td>1375C 1h-700C 1h</td>
<td>700</td>
<td>82</td>
<td>5.5</td>
<td>0.079</td>
</tr>
<tr>
<td>20% Cu impregnated on Ni-YSZ</td>
<td>800C 4h-700C 1h</td>
<td>700</td>
<td>166</td>
<td>20</td>
<td>0.69</td>
</tr>
<tr>
<td>Ni-YSZ</td>
<td>1375C 1h-700C 1h</td>
<td>700</td>
<td>328</td>
<td>15</td>
<td>1</td>
</tr>
</tbody>
</table>
Ni-Cu Methane Steam Reforming
Powder Tests--Conclusions

- Cu shows promise for decreasing activity of Ni-YSZ
 - Glycine nitrate synthesis
 - Activity decrease at 700°C nearly two order of magnitude with 20% Cu
- Effectiveness of Cu decreases with increasing temperature
 - Phase segregation and/or high mobility of Cu at higher temperatures implicated
 - Activation energy of Ni-Cu is higher than Ni-YSZ
- Developing realistic preparation method key to viable Ni-Cu-YSZ anode
 - Volatility of CuO at sintering temperatures requires post-addition of Cu or alternative method of synthesis
 - Simple Cu impregnation method inadequate
Future Work
Carbon Tolerance Studies

- Extended runs to determine Ni-YSZ susceptibility to carbon formation
 - S/C and conversion level effects for methane and natural gas reforming
 - Provide baseline data for comparison with alternate formulations

- Evaluate Ni-MgO-YSZ formulations for improved carbon tolerance
 - Determine effect of preparation and pretreatment on
 - Activity and lineout behavior
 - Carbon-free operation
 - Compare with Ni-YSZ baseline data

- Corroborate/correlate powder results with Ni-YSZ and Ni-MgO-YSZ anode strips
Future Work
Activity Modification Studies

- Determine limits to Ni-YSZ activity control through thermal steam/hydrogen pretreatment

- Extend studies of Ni-Cu-YSZ activity control
 - Cu concentration and pre-treatment effects
 - Temperature cycling studies 700-850°C for activity and stability
 - Stability to low S/C and natural gas
 - Effect of YSZ on Ni-Cu interaction
Future Work
Ni-Cu-YSZ Synthesis and Fabrication

- Evaluate preparation methods for Ni-YSZ-Cu
 - Infiltration or electrodeposition of Cu onto Ni-YSZ post-sintering
 - Other approaches including industry collaboration

- Tailored compositions that compensate for Cu loss during sintering

- Test compositions as powders and formed strips
 - Compare with GN results
 - Measure thermal axial profile and compare with model predictions

- Work with industry to evaluate Ni-Cu-YSZ in cell tests
Acknowledgements

The work summarized in this presentation was funded under the U.S. Department of Energy’s Solid-State Energy Conversion Alliance (SECA) Core Technology Program.

The authors wish to thank Wayne Surdoval, Travis Shultz and Don Collins (NETL) and Prabhakar Singh (PNNL) for their helpful discussions regarding this work.

Additional PNNL contributor: V. Sprenkle provided anode compositions used in our tests.
Backup Slides
Ni0.98Cu0.02 Catalyst Shows Low Activity
GN, Calcined at 800°C/4hr,
WHSV = 312,400 S/C/H=3:1:0.1 T=700°C

Compare with 12-15% CH₄ conversion for Ni-YSZ
Conversion of Synthetic Natural Gas over Non-Equilibrated Ni-YSZ Shows Slow Deactivation

GHSV = 667K, S/C/H/He = 3/1/1/5, T=700°C

Carbon observed at front end of catalyst bed at end of run