Alloy Development

James M. Rakowski
ATI Allegheny Ludlum
An Allegheny Technologies Company

SECA Core Technology Program
SOFC Interconnection Technology Workshop
Argonne National Laboratory
July 28, 2004
Introduction

- Iron and nickel-base alloy design and development is a relatively mature science
- Helpful tools exist to aid in alloy development
- Transition from laboratory to practice is critical, complex, and often challenging
Overview

• Introduction to ATI Allegheny Ludlum and Allegheny Technologies
• Alloy design methodology and tools
• Alloy design for oxidation resistance
• Obstacles in transition from laboratory to practice
• Examples of ALC alloy development
<table>
<thead>
<tr>
<th>Allegheny Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials</td>
</tr>
<tr>
<td>Stainless steel, Ni-base alloys, Ti (CP and alloy), Co-base alloys, Zr, Hf, WC, +++</td>
</tr>
<tr>
<td>Product Forms</td>
</tr>
<tr>
<td>Sheet, Strip, Plate, Billet, Bar, Rod, Castings, Forgings, and Cutting Tools</td>
</tr>
<tr>
<td>Sales Distribution</td>
</tr>
<tr>
<td>US 77%</td>
</tr>
<tr>
<td>Europe 12%</td>
</tr>
<tr>
<td>Primary Markets</td>
</tr>
<tr>
<td>(2003 annual report)</td>
</tr>
<tr>
<td>Aerospace 18%</td>
</tr>
<tr>
<td>CPI / O&G 10%</td>
</tr>
<tr>
<td>Automotive 12%</td>
</tr>
<tr>
<td>Appliance 10%</td>
</tr>
<tr>
<td>Power Gen 11%</td>
</tr>
<tr>
<td>Cutting Tools 10%</td>
</tr>
<tr>
<td>ATI Operating Companies</td>
</tr>
<tr>
<td>Allegheny Ludlum, Allvac, Wah Chang, Metalworking Products, Portland Forge, Casting Service</td>
</tr>
<tr>
<td>ATI Joint Ventures</td>
</tr>
<tr>
<td>STAL, UNITI</td>
</tr>
</tbody>
</table>
ATI Allegheny Ludlum Products

Stainless Steels and Specialty Alloys

<table>
<thead>
<tr>
<th>Type</th>
<th>Stainless Steel Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austenitic (Fe-Cr-Ni)</td>
<td>Ferritic (Fe-Cr)</td>
</tr>
<tr>
<td>Type 201L</td>
<td>Types 409, 409ALMZ™, 439, 444</td>
</tr>
<tr>
<td>Types 301, 304, 316, 317, 321, 347</td>
<td>AL453™, E-BRITE®, AL 29-4C® alloys</td>
</tr>
<tr>
<td>Types 309S, 310S</td>
<td>ALFA™ I, II alloys (FeCrAl)</td>
</tr>
<tr>
<td>AL904L™, AL-6XN®, AL4565™ alloys</td>
<td>Precipitation-Hardening (Fe-Cr-Ni)</td>
</tr>
<tr>
<td>Duplex (Fe-Cr-Ni)</td>
<td></td>
</tr>
<tr>
<td>AL2003™, AL2205™, AL255™ alloys</td>
<td>AL286™ alloy</td>
</tr>
<tr>
<td></td>
<td>AL13-8™, AL15-5™, AL15-7™, AL17-4™, AM350™, AM355™ alloys</td>
</tr>
<tr>
<td>Specialty</td>
<td>Titanium</td>
</tr>
<tr>
<td>Grain oriented silicon steels</td>
<td>CP grades 1-4</td>
</tr>
<tr>
<td>Controlled magnetic property alloys</td>
<td>Grades 5 (6-4) and 23 (6-4 ELI)</td>
</tr>
<tr>
<td>Controlled CTE (AL36™, AL42™ alloys)</td>
<td>Grades 7, 11, 16, 18 (Pd-bearing)</td>
</tr>
<tr>
<td>Armor plate (K12® Armor Plate)</td>
<td></td>
</tr>
<tr>
<td>Tool Steels</td>
<td></td>
</tr>
</tbody>
</table>

Nickel-Base Alloys

<table>
<thead>
<tr>
<th>Grade</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat-Resistant Grades</td>
<td>Corrosion-Resistant Grades</td>
</tr>
<tr>
<td>AL800™/AL800H™, AL825™, AL600™, AL601™ alloys</td>
<td>AL22™, AL276™, ALLCOR®, AL400™ alloys</td>
</tr>
<tr>
<td>ALTEMP® 625, ALTEMP® 718, ALTEMP® HX, ALTEMP® 263 alloys, X-750 alloy</td>
<td></td>
</tr>
</tbody>
</table>

™ Trademarks of ATI Properties, Inc.
® Registered Trademarks of ATI Properties, Inc.
ATI Allegheny Ludlum Technical Center
Technical Center

Functions

• Stainless Steel, Nickel and Titanium Alloy Development
• Product Improvement
• Process Improvement
• Failure Analysis
• Welding Process Development
• Corrosion Testing
• Oxidation Testing
• Mechanical Testing (non-production)

Facilities

• Melt Shop (50 lb VIM)
• Process Lab
 (4 Rolling Mills, Forge Press, Furnaces)
• Metallography Lab
 (Sample Preparation, Microscopes)
• Scanning Electron Microscope
• Scanning Auger Microprobe
• Corrosion Lab
• Oxidation Lab
• Mechanical Behavior Lab
• Welding Lab
• Annealing Simulation (Gleeble) Lab
Technical Center
Alloy Design and Development

• Development of new/unique alloys is not as common as in the past
• Most projects involve modifying existing alloys for a specific need or market
 – Performance improvement
 – Cost reduction
 – Process enhancement
• Well-established methods and tools exist to aid in alloy design
Design for Oxidation Resistance

• Traditional methods for designing heat-resistant alloys involve the concept of selective, protective oxidation
 – Useful protective oxides are Cr$_2$O$_3$, Al$_2$O$_3$, SiO$_2$
 – Choice depends on application
 • Temperature
 • Environment
 • Strength requirements
 – Incorporate sufficient amount to form and maintain an external oxide scale
 – Most wrought heat-resistant alloys rely on chromium oxide

• Required operating lifetime
• Cost
Design for Oxidation Resistance

• Secondary alloying effects can be utilized to increase oxidation resistance
 – Add an element which exhibits intermediate oxide stability (e.g. FeCrAl alloys)
 – Add rare earth elements to increase adhesion, reduce growth rate
 – Some oxides can be doped, which alters the defect structure and growth rate
Design for Oxidation Resistance

- Mitigate unwanted alloying effects
 - Phase stability issues
 - TCP phases
 - Laves
 - Ferrite-austenite balance (stainless steels)
 - Rapid precipitation of strengthening phases
 - Hot working
 - Coiling
 - Rare earth over-doping
 - Excessive oxidation
 - Workability problems
Design for Oxidation Resistance

- Protective oxides typified by...
 - Compact
 - Adherent
 - Slow-growing
 - Low concentration of charged electronic / ionic defects

- SECA goals may require non-traditional design concepts
 - Protective oxides generally poor electrical conductors
 - Chromium oxide proven to be volatile in the presence of water vapor to levels damaging to SOFC components
Design for Oxidation Resistance

- Extensive theoretical work exists to predict oxidation behavior of alloy systems and to aid in the interpretation of experimental data
 - Theory of diffusion-controlled oxidation (Wagner)
 - Theory of transition from internal to external oxidation (Wagner)
 - Rate law theory (many)
 - Various thermodynamic diagrams
Empirical Design

- Identify required properties
 - Mechanical properties
 - Physical properties
 - Corrosion/oxidation resistance
 - Formability
 - Cost

- Correlate required properties with existing knowledge
 - Do you need a new alloy?
 - Where should you begin?
Design Tools

• Alloy selection tools
 – Handbooks
 – Software (e.g. CES4 - Granta Design)
• Phase diagrams
• Constitutive equations
• Computer modeling
Constitutive Equations

- Simple predictive expressions
- Developed by analysis of large data sets
- Single purpose
- Generally of limited applicability
- Good for predicting effects of minor variations in composition, processing, etc.
Constitutive Expressions

Ferrite Number (δ ferrite)

\[FN = 3.53(C_{eq}) - 2.61(N_{eq}) - 30.03 \]

\[(C_{eq}) = [Cr]+[Mo]+1.5[Si]+2.27[Ti+V]+0.5[Nb+W]+0.21[Ta]\]

\[(N_{eq}) = [Ni]+30[C+N]+0.5[Mn]+0.4[Cu+Co]\]

Electron Vacancy (TCP phases)

Sigma Solvus

\[T_s = 26.4[Cr] + 6.7[Mn] + 50.9[Mo] + 92.2[Si] + 447 \]

\[- 9.2[Ni] + 17.9[Cu] + 230.4[C] + 238.4[N] \]

Rechsteiner

Pitting Resistance Equivalency (relative corrosion resistance)

\[PRE_N = [Cr]+3.3[Mo]+X[N] \quad X = 16 \text{ or } 30\]

Coefficient of thermal expansion (Ni-base alloys)

\[\alpha_L = 13.87 + 0.073[Cr] - 0.080[W] - 0.082[Mo] -0.018[Al] - 0.163[Ti] \]

Yamamoto et. al.
Computational Design

• Thermodynamic models (Thermo-Calc, JMatPro software)
 – Prediction of equilibrium phase balances via free energy minimization methods
 – Input factors include alloy composition, state variables
 – Generate phase diagrams, stepped output (temperature, composition)
 – Prediction of static situations
Computational Design

Diagrams from Thermo-Calc example manual
Computational Design

Al–0.23Cr–1.6Cu–0.5Fe–2.5Mg–0.3Mn–0.4Si–5.6Zn wt% (Balance: Cu)

Diagrams from JMat-Pro example manual
Computational Design

• Recent software packages include a wider array of functions
 – JMatPro
 • Physical, mechanical properties
 • Lattice mismatch
 • TTT and CCT diagrams
 • Particle coarsening
Computational Design

TTT NiFe 718 superalloy

CCT NiFe 718 superalloy

Diagrams from JMat-Pro example manual
IN939 nickel superalloy heat treated at 720C
Computational Design

• Recent software packages include a wider array of functions
 – JMatPro
 • Physical, mechanical properties
 • Lattice mismatch
 • TTT and CCT diagrams
 • Particle coarsening
 – DICTRA
 • Diffusion in multi-component systems
Computational Design

Diagram from DICTRA example manual
Computational Design

- **Strengths**
 - Rapid analysis
 - Inexpensive to run numerous trials

- **Shortcomings**
 - Only as good as the systematic assessment
 - Assumes equilibrium conditions
 - Requires experimental analysis and verification
 - Can be difficult to use
Computational Design Tools for Oxidation Resistance

- Few computational tools exist for predicting phase formation
 - A combination of thermodynamic and diffusion models should be able to address problem
- Some recent tools based on observations have become available to predict oxidation behavior under certain conditions
 - COSP for cyclic oxidation and spallation (Smialek-NASA)
 - ASSET alloy selection program (John-Shell/MTI)
- Custom approaches - ALC example
 - Lifetime map for metal foil
 - Oxidation and creep are active
 - Phenomenological model based on experimental data
Lifetime Map for Metal Foil

- **Yield Stress Curve**
- **100,000 hour life**
 - No breakaway oxidation
 - 1% max creep

Oxidation Limits
(expanded from 10,000 hour tests)

- 1300°F test
- 1400°F test

Graph Details

- **Operating Stress (ksi)**
 - 60
 - 40
 - 20
 - 10
 - 0

- **Operating Temperature (°F)**
 - 0
 - 250
 - 500
 - 750
 - 1000
 - 1250
 - 1500
Lifetime Map for Metal Foil

60,000 hour design lifetime
maximum 1% creep
no breakaway oxidation
(based on expansion of 1300°F test data)

- Type 347
- AL 20-25+Nb™ Alloy
- ALTEMP® 625 alloy

Operating Stress (ksi)

Operating Temperature (°F)
Design of Experiments

- Utilize statistical methods and tools to construct experimental program
- Select critical variables
- Allow to vary in a controlled fashion
- Analyze the results to determine
 - Main effects of primary factors
 - Interactions between factors
Factorial Analysis

- Factors are critical variables
- Levels are quantitative or qualitative (e.g. high or low) factor values
- Provides more information than varying one factor at a time
 - Yields main effects of individual factors
 - Yields interactions between factors that simple approach overlooks
 - Proper use of randomization and repetition reduces sensitivity to baseline conditions
Factorial Analysis

- Simplest example is a two factor DOE experiment

- Diagram illustrating the four experiments:
 - A- B+
 - A+ B-
 - A- B-
 - A+ B+

- Factors (A, B) with levels (+, -)
- Four experiments

+ A + B +
- A - B -
Factorial Analysis

- Simple or highly focused experiments can be run full-factorial
- Factorial analysis scales quickly to large numbers of experiments when numbers of factors is high

<table>
<thead>
<tr>
<th>number of factors (k)</th>
<th>2 levels 2^k</th>
<th>3 levels 3^k</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>81</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>243</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>729</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>2,187</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
<td>6,561</td>
</tr>
</tbody>
</table>
Fractional Factorial Analysis

- Permits down-selection and significant reduction in required number of tests
- Yields less information, particularly for higher order interactions
- Higher order terms (3rd order and above) are generally not significant
- If any factor is not statistically significant, fractional factorial collapses to a full factorial
- Some effects will be confounded and cannot be evaluated separately (aliased)
- Resolution must be selected carefully to produce useful information
- DOE tools used to generate test matrices and to determine aliased effects
Transition to Production

• Transition from design to production can be difficult
• Limited by available production methods and economics
• What works on a laboratory-scale may not work in a production plant
 much larger
 much faster
 far less forgiving
Lab-Scale Alloy Production

• Melting
 – Small vacuum-melted buttons (< 1 pound)
 – Larger ingots (20-300 pounds) from VIM or VIM/ESR furnaces

• Product form
 – As-cast pieces
 – Small forgings
 – Narrow hand-rolled sheet and very small coils
Mill-Scale Production

• Melting
 – Small heats
 • Vacuum-melted as small as 1,000 pounds
 • Air-melted as small as 10 tons (20,000 pounds)
 – Large heats
 • Vacuum-melted up to 15 tons (30,000 pounds)
 • Air-melted up to 180 tons (360,000 pounds)

• Product forms
 – Large coils, plates, bars, etc.
 – Quantities often restricted to product of a heat, particularly for sole-purpose alloys
Melting
Melting

• Low-cost air melting practices
 – EAF/AOD with continuous casting
 – EAF/AOD with ingot casting
 – EAF with continuous casting (limited)

• Higher-cost premium melting/remelting practices
 – VIM
 – ESR
 – VAR
 – Exotic practices (PM, PAM, EB, EB-CHR)
Melting — Common Issues

- Elemental segregation
- Solidification cracking and defects
- Reactive element additions
- Volatile element additions
- Residual/minor element control
Melting Issues — Mitigation

- Minimize alloy additions which can be problematic
- Change to melting methods which minimize detrimental effects
 - Some alloys are difficult to continuously cast
 - Some alloys require special practices
 - Some alloys have to be remelted
 - Extreme tendency for segregation
 - Cleanliness requirements
- Some alloys cannot be produced by traditional melt methods
Downstream Processing

- Hot rolling
 - Hot strip mill (once-through)
 - Steckel mill (reversing)

- Cold rolling
 - High-throughput mills (Sendzimir, reversing)
 - Heavy reduction
 - Fast speeds

- Annealing
 - Continuous process (strand)
 - Air anneal and descaling (pickling)
 - Hydrogen bright anneal
 - Vacuum anneal
Hot Rolling
Hot Rolling

• Hot workability range
 – Can be narrow for highly alloyed materials
 – Hot deformation testing to determine workability range

• Very strong alloys may be difficult to work
 – Powerful hot rolling mills
 – Smaller sizes

• Precipitation reactions (e.g. γ') make difficult coiling and uncoiling
 – Kinetic studies to determine precipitation behavior
 – Chemistry modifications

• Edge checking
 – Control of temperature uniformity
Cold Rolling
Cold Rolling

- Poor rolling behavior
 - Britteness
 - High work hardening rate
- Causes
 - Chemistry
 - Microstructure / phase balance
- Consequences
 - Numerous anneal cycles
 - Breakage / lower yield
- Potential Solutions
 - Minimize elements which impact rollability
 - Control phase balance
 - Lab rolling trials to establish process limits
Annealing and Pickling
Annealing and Pickling

• Critical factors
 – Grain size
 – Surface condition
 • Oxide removal
 • Removal of altered metal (e.g. Cr-depleted zone for stainless steel, alpha case layer for Ti)

• Potential solutions
 – Annealing cycle trials (Gleeble)
 – Lab-scale pickling trials
 – Corrosion testing
 – Oxidation testing
 – Welding trials
Economics

- More expensive alloying additions
 - Nickel, molybdenum, cobalt
 - Rare earth elements
 - Precious metals

- Price volatility
 - Alloying additions
 - Base metals
Economics

- Alloying additions which may necessitate advanced melting practices
 - Rare earth elements
 - Refractory metals
 - Volatile additions
 - Cleanliness / ultra-low residual element requirements
- Sole-purpose generally more expensive than multi-purpose alloys
- Best technical solution not always best commercial solution
Economics

• When is the material cost critical?
 – Questionable
 • Prototypes / proof of concept
 • Critical performance requirements
 – Perhaps
 • Low volume production
 • Low quantity incorporation
 – Certainly
 • High volume production
 • High quantity incorporation
Selected Recent ATI Alloy Development Projects

- **AL 2003™ alloy**
 - Lean duplex stainless steel alloy
 - Balanced corrosion resistance and strength at relatively low cost (economic alternative to Types 316 and 317 stainless)

- **ATI™ 425 alloy**
 - Alloy titanium made by coil processing without anisotropy
 - Properties similar to Ti-6-4 at lower cost

- **AL 347HP™ alloy**
 - Existing austenitic stainless steel composition (UNS S34700)
 - Proprietary processing yields thirty percent improvement in creep strength

- **Type 388 (ZeCor™ alloy)**
 - High-silicon austenitic stainless steel
 - Resistance to hot, concentrated sulfuric acid at relatively low cost

™ Trademark of ATI Properties, Inc.
ZeCor is a trademark of Monsanto Industries LLC
Example - AL 2003™ Alloy Development

- Development of a lean duplex (α-γ) stainless steel
 - Adequate corrosion resistance and mechanical properties
 - Improved weldability
 - Improved phase stability
 - Lower cost

- Literature survey / IP review

- Selection of compositions
 - Thermo-Calc simulations
 - PRE$_N$, MD$_{30}$, FN, T$_\sigma$

- Melted numerous lab-scale heats
 - Processed to plate and sheet sizes
 - Corrosion, impact, tensile testing, microstructural evaluation; heat-treatment studies for sigma solvus and α-γ phase balance

- Selection of primary composition
Example - AL 2003™ Alloy Development

- Melted several commercial-scale heats
 - Corrosion, impact, tensile testing
 - Microstructural evaluation
 - Welding trials
 - Modified practices and chemistry to optimize corrosion resistance and microstructure, phase balance, and mechanical properties

- Qualifications
 - Acquired UNS number (S32003)
 - ASTM approvals for plate, sheet, strip, pipe, and tubing
 - Working on NORSOK, ASME code qualification (requires three heats) and customer acceptance
Example - AL 347HP™ Alloy Development

- Existing alloy modified to meet need for higher creep strength at foil thickness (200 microns or less)
- Optimize NbC carbide particle distribution and grain size by controlling thermomechanical processing
- Proven in laboratory setting on small trial pieces (ORNL)
 - Examine different heat input levels
 - Varied time at temperature combinations
- Ten-foot sections of foil spliced into production continuous coil anneal lines
 - Examine different heat input levels
 - Vary furnace set points and line speeds
 - Translation of lab experiments to production practice
- Full production coils processed using new annealing cycle
- Verified at all stages with creep testing and metallography
Summary

• Iron and nickel-base alloy design and development is a relatively mature science
• Helpful tools exist to aid in alloy development
• Transition from laboratory to practice is critical, complex, and often challenging
Acknowledgements

- David Bergstrom, ATI Allegheny Ludlum
- John Dunn, ATI Allegheny Ludlum
- John Grubb, ATI Allegheny Ludlum
- Henry Lippard, ATI Allvac
- Tom Matway, ATI Allegheny Ludlum
- Charles Stinner, ATI Allegheny Ludlum
- Steve Washko, ATI Allegheny Ludlum
- Prabhakar Singh, PNNL