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EXECUTIVE SUMMARY 

This report describes a novel technique for deriving surrogate models from simulations. 
Surrogate models are built iteratively using polynomial chaos expansion (PCE) and detailed 
numerical simulations of carbon sequestration systems. The technique has been applied to 
simulations of a 2-D benchmark problem and the Scurry Area Canyon Reef Operators 
Committee (SACROC) oilfield. In both cases, output variables from a numerical simulator were 
approximated as polynomial functions of uncertain parameters.  

Classical full PCE models are expensive to derive unless the number of terms in the expansion is 
moderate. To cope with this limitation, we introduce a mixed-integer programming (MIP) 
formulation to identify the best subset of basis terms in the expansion. This approach makes it 
possible to keep the number of terms small in the expansion, thus reducing the number of 
required simulations.  

Our numerical experiments show that, in comparison with prior PCE techniques, simpler PCE 
models are obtained with high accuracy by the proposed approach. The resulting maximum 
relative error for the benchmark problem is 6%. The derived PCE models can therefore be used 
effectively in place of the numerical simulator and decrease simulation times by several orders of 
magnitude. 
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1. INTRODUCTION 

The dynamics of an underground CO2 plume can be predicted by solving the governing heat and 
mass balance equations and Darcy’s equation. Analytical solutions to these equations can be 
obtained under simplified assumptions (Nordbotten et al., 2005; LeNeveu, 2008; Juanes and 
MacMinn, 2009). On the other hand, those governing equations can be solved with numerical 
simulators such as ECLIPSE or TOUGH2 for much more complicated and heterogeneous 
conditions. The typical situation encountered in the real world involves incomplete knowledge or 
limited measurement ability (particularly for porosities and permeabilities) that brings 
uncertainty into the use of those governing equations. Uncertainties in these input parameters 
usually have a significant effect on the output of a model, which raises the question of how to 
reliably quantify the risks of injecting CO2 underground when such uncertainties are present.  

One way to quantify these uncertainties is to combine a detailed model, usually a numerical 
simulation model, with Monte Carlo (MC) simulation that involves repeated simulations using 
expected frequency histograms/distributions of model input values to obtain frequency 
histograms/distributions of model outputs. However, numerical models are generally 
computationally expensive for repeated simulations, especially when a single realization of the 
simulation requires hours or days of CPU time. As an alternative, we can first approximate the 
detailed model output of interest using a reduced-order model, such as polynomial chaos 
expansion (PCE), with respect to the uncertain parameters and then use the derived PCE 
approximation to perform MC simulation.  

PCE methods can provide efficient and accurate ways of representing uncertain behavior in a 
complex system. One category of PCE methods is nonintrusive approaches, which require no 
manipulation of the equations in the simulator. The unknown coefficients in the expansion are 
usually evaluated through interpolation or regression. These nonintrusive approaches are easy to 
implement and generalize to complex systems. For this reason, we focus on nonintrusive PCE 
methods based on regression. 
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2. POLYNOMIAL CHAOS EXPANSION  

If some model parameters (inputs) are uncertain and can be characterized with probability 
density functions (PDFs), such as normal or uniform distributions, then model outputs would 
also behave as random variables and follow distributions as well (see Figure 1).  

 

Figure 1: Uncertainty propagation. 

If we assume that a particular model output y has finite variance, then y can be represented by the 
following polynomial chaos expansion with respect to uncertain input x (Wiener, 1938): 

∞

	

 

where the α′s are coefficients, the B′s are multivariate polynomial basis functions that are 
orthogonal with respect to the joint PDF of x, and d is the degree of basis functions. Details of 
this definition and a discussion of the generation of multivariate polynomial basis functions can 
be found in a paper by Zhang and Sahinidis, 2013. In practice, this infinite expansion is truncated 
at a finite degree d. The number of the terms Nt in the expansion can be calculated as 
(M+d)!/M!/d!, where M is the number of uncertain inputs, and d is the degree of the polynomial 
basis functions. This number grows rapidly as the number of inputs and degree increase, e.g., for 
a ten-input expansion truncated at degree six, Nt is 8008. 

The coefficients α in the expansion can be estimated through regression, using the following 
process. First, a few sample points Np are selected in the domain of uncertain inputs. Then, an Np 
× Nt feature matrix B is obtained by evaluating polynomial basis functions under those sample 
points. Also, a set of Np values of a model output y is obtained by running the detailed simulation 
with the selected sample points. Then, coefficients are computed by solving the following linear 
system: 

 

Generally, the number of sample points Np is greater than Nt so that this linear system is over-
determined with a closed form solution for α, i.e., . Note that for numerical 
simulators that discretize space and time in the governing partial differential equations, PCEs are 
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developed for each gridblock. Therefore, the coefficient vector α is temporally and spatially 
dependent. 

The R2 statistic can be used to measure the goodness of fit for different polynomial basis 
functions; i.e., the closer R2 is to one, the better fit it is. Another generally used measure is cross-
validation error, e.g., leave-one-out cross validation Q2. This is often a better estimator to use, as 
it reduces the chance of overfitting. 

However, optimizing the number of sample points brings a potential problem. It means that the 
numerical simulator needs to be run at least Nt times to estimate the coefficients, which would 
become computationally prohibitive for multi-dimensional inputs and a high degree of 
expansion. To cope with this issue, forward and backward stepwise regression techniques can be 
used, for example as proposed by Blatman and Sudret (2010). However, in this kind of stepwise 
regression method, the synergistic effect of basis functions is ignored. For example, a basis 
function Bk discarded at iteration k may become significant in future iterations after the addition 
of new basis functions. Since the stepwise scheme does not allow the reentry of previously 
discarded terms, the resulting truncated polynomial expansion may not be the best subset of the 
basis set. This issue is addressed with a mixed-integer programming formulation. 

STEPWISE REGRESSION WITH MIXED-INTEGER PROGRAMMING 
FORMULATION 

In Zhang and Sahinidis (2013), we proposed a new method of best subset selection based on 
mixed integer programming (MIP) to build PCE surrogate models. The detailed formulation can 
be found in the paper by Zhang and Sahinidis (2013). A schematic flowchart of the proposed 
MIP-based stepwise regression is presented in Figure 2.  
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Figure 2: Flowchart of MIP-based stepwise regression method. 

 

This MIP formulation preserves the advantages of the stepwise regression, i.e., keeps the number 
of terms in the expansion small as long as the tuning parameter T (number of terms in the 
expansion) is chosen to be small. In fact, if T is set to be Nt, the solution of this MIP also 
recovers the full classic polynomial chaos expansion. This flexibility of manipulating the number 
of terms enables us to construct a general PCE model that is either a full expansion or an 
expansion of a subset of basis functions. In addition, the optimal set of the basis functions 
obtained by solving the MIP problem is based on a complete search over the set of basis 
functions. This gives us the best subset that considers the synergistic effects of basis functions. 
Also, the introduction of cross-validation error (which is recalculated at each step in the fitting of 
the orthogonal polynomial expansion) helps to determine the appropriate degree and number of 
terms in the expansion and avoid overfitting (see Figure 3). 
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d = d+1
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2 is the 
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Qd
2 < Qd-1

2? y = Md-1 (x) with Td-1 terms

Qd
2 ≥ Qtarget

2? y = Md (x) with Td  terms

yes

yes

yes

no

no

no
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Figure 3: Fitness measure by R2 and Q2. T is optimized where Q2 is a maximum. 

 

In computational results, Zhang and Sahinidis (2013) observe that the MIP-based method results 
in smaller subsets of basis functions in comparison to the stepwise method based on forward 
selection and backward elimination. This proposed adaptive PCE method is applied to a 
benchmark problem presented in the following sections.  
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3. 
A benchmark of CO2 injection into a 2-D layered brine formation has been simulated using 
TOUGH2 (Problem no. 4 in Pruess, 2005). This benchmark problem was based on the first 
industrial-scale CO2 disposal project with approximately one million tons of CO2 per year 
injecting into a saline aquifer through a horizontal well.  

MODEL INITIATION 

A 2-D vertical half space section was modeled assuming each permeable formation is 
homogeneous and isotropic (see Figure 4). The domain is discretized into 29×34 (986) 
gridblocks. The simulation by TOUGH2 provides results such as the pressure and the CO2 
distribution profile (e.g., mass and gas saturation) through all the formation layers.  

We are mainly interested in quantifying the impact of the uncertain parameters such porosity and 
permeability on the model outputs. For illustration purposes, the model outputs will be 
approximated as polynomial functions of porosity and permeability, allowing us to perform MC 
simulation with the PCE approximation later. The approach can be easily extended to higher 
dimensions and include, for instance, injection rate and time as model inputs. 

 
Figure 4: Schematic geometry of CO2 injection into saline aquifer (half space). 
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4. PCE SURROGATE MODEL DEVELOPMENT 

To determine the polynomial basis functions with respect to uncertain porosity and permeability, 
the probability distributions of the two parameters need to be specified. As an illustration, the 
National Petroleum Council database for over one-thousand reservoirs in the United States is 
used. The marginal distributions of the two parameters are in Figure 4.  

 
(a) 

 
(b) 

 

Figure 5: (a) Probability distribution function of porosity, and (b) Probability distribution function of 
permeability. 

Since neither of the two parameters follows a standard parametric distribution, for example, the 
fitted distribution of porosity obtained by kernel density estimation is not a standard distribution. 
Moreover, there exists a strong correlation between the two parameters, a transformation is 
performed to translate the two correlated parameters into uncorrelated standard normal random 
variables ξ. 

Once we have the standard normal random variables, we can utilize the series of Hermite 
polynomials known as orthogonal polynomials for a single standard normal variable. For the 
case of two random variables, the polynomial basis functions are as follows: 

ξ , ξ 1 

ξ , ξ ξ 	

ξ , ξ ξ  

ξ , ξ ξ 1 

ξ , ξ ξ ξ  

ξ , ξ ξ 1 

 
 

…
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The model output is then a PCE approximation in terms of ξ with the coefficients α′s left as 
unknowns. To estimate unknown coefficients, a fixed design of experiments is chosen, i.e., 100 
Latin hypercube sampling (LHS) design for ξ. Then those polynomial basis functions are 
evaluated for these 100 sample points. The model evaluation vector y is obtained by first 
performing the reverse of the Nataf transformation to translate the random ξ back to the 
corresponding x values and running the model with these x samples. Among these, the best 
subset selection method using the MIP formulation is solved to find a PCE approximation for a 
model output with relatively large R2 and Q2 values. Figure 6, which shows a response surface 
for mass of gas phase CO2 in the caprock, is one example of the polynomial surface fitted to 100 
random samples with high accuracy, i.e., R2 = 0.98 and Q2 = 0.98. In this case, a fourth-order 
expansion is used. 

 
Figure 6: An example of PCE surrogate model, fitting to a fourth-order expansion. 

R2=0.98 

Q2=0.98 
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5. 
Once we have PCE approximations of the original numerical model as a function of the 
uncertain parameters, we can then perform uncertainty analysis with the PCE models. The effect 
of parameter uncertainties can be quantified using MC simulation. Generally, in MC simulation, 
values of the uncertain parameters are randomly sampled from their respective PDFs (if 
parameters are independent) or from their joint PDF (if parameters are correlated). An LHS 
technique is used to increase the likelihood that the space of the uncertain parameters is covered 
sufficiently by these sampled points. By substituting the random values of uncertain parameters 
into the PCE approximation, the corresponding y values are obtained (see Figure 7). Statistical 
analysis can then be performed for this specific model output y for uncertainty analysis. 

UNCERTAINTY ANALYSIS BASED ON PCE SURROGATE MODELS 

 

 

Figure 7: Monte Carlo simulation with PCEs. 

For the benchmark problem here, it takes about 15 min to perform one TOUGH2 simulation, 
which means 4,000 MC simulations would take over 1 CPU-month of time. With our developed 
PCE models, the average time of running simulations is less than 0.1 second. In this case, we 
performed 1,000 simulations with the TOUGH2 model to obtain distributions of model outputs 
to use for validating the results of the PCE models. Developing a single PCE model takes a few 
seconds with MATLAB implementation and running a single PCE simulation takes less than one 
second. Therefore, the overall computation time of using the adaptive PCE method for MC 
simulation is mainly due to the 100 numerical simulations at sampled points. This time is about 
10% of the time for running 1,000 MC simulations with TOUGH2 directly. Figure 8 shows the 
cumulative distribution functions for the mass fraction of CO2 in the layer of saline aquifer after 
30 days of injection. The distribution obtained with a second-order polynomial expansion 
(dashed red) is very close to the distribution (solid blue) obtained by running TOUGH2. Figure 9 
shows a comparison between gas saturations predicted by PCE and TOUGH2 models after 30 
days of injection. The two models demonstrate strong agreement in this case, which is 
representative of most of the simulations completed. 

 

P
C
E 
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Figure 8: The cumulative distribution functions for the mass fraction of CO2 in the layer of saline aquifer 

after 30 days of injection. 

 

 
Figure 9: Gas saturation contour map in average obtained with TOUGH2 (left) and with PCEs (right). 

  



Developing Surrogate Models for CO2 Sequestration Using Polynomial Chaos Expansion 

12 

6. CONCLUSION 

We have presented a MIP-based best subset selection method to iteratively build PCE models for 
predicting subsurface conditions (e.g., pressure, saturation) during geologic CO2 storage. This 
particular PCE method is able to capture synergistic effects between low- and high-order 
polynomial terms, thus providing high accuracy and computational efficiency. In our study, 
correlated uncertain parameters are considered without assumptions of parametric distributions, 
thereby reducing the error introduced by subjectively fitting raw data to parametric distributions. 
The response surfaces of model outputs obtained with the PCE surrogate models match well with 
those obtained with detailed simulations with TOUGH2. We further utilized the PCE models for 
uncertainty quantification. In uncertainty analysis, the probability distributions from Monte Carlo 
simulation with PCE approximations are very close to the true distribution functions (those 
obtained with Monte Carlo simulation using TOUGH2). Using the PCE models reduced the time 
needed for simulations by orders of magnitude. 
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