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The information and data contained in this report are the result of an ecomonic
valuation and a preliminary design effort and because of the nature of this work

no guarantees or warranties of performance, workmanship, or otherwise are made,
ither expressed or by implication.
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DEFINITIONS OF OPTIONS
TO BASE LINE DESIGN



1. Definition f Options to Baseline Design

1.1 Methodology for Selection

There are several key process features needed to be addressed in selecting the
options. These key process features are 1) coal cleaning method, 2) reactor
configuration, 3) vacuum bottoms processing and 4) method of hydrogen production.
The variables related to each of these process features are listed in Table 1.1. For
reader's reference, the process variables/features of the baseline design are given in
Table 1.2.

The methodology utilized to select the options is explained below:

Identify the primary process features and variables related to each process
feature (Table 1.1)

Define the baseline design by selecting the agreed upon combination of
process variables/features as shown in Table 1.2.

Define each option by changing the variable of one process feature at a time,
maintaining the variables of other process features unchanged

Combination of the newly defined process features defines the respective option

1.2 Selected Options

The above methodology is utilized in selecting the various options for this study.
There were six selected options. Process features and related variables for these six

options are shown in Tables 1.3 through 1.8

Besides these six options, an additional option, Option 7, was incorporated in the
study as a modification of the original scope of the study. In this option a naphtha
reformer, Plant 7, is added to the baseline design downstream of the naphtha
hydrotreater (Plant 4 of the base case) to produce a 95 RON clear reformate product.



TABLE 1.1

PROCESS FEATURES AND RELATED VARIABLES

Process Features: Variables:

Cleaning Method for Feed Coal J ig
Heavy Media Separation
Spherical Agglomeration

Reactor Configuration Catalytic-Catalytic
Thermal-Catalytic
Catalytic-Catalytic with
Vent Gas Separation

Vacuum Bottoms Processing ROSE-SR
Coking

Delayed
Fluid

Hydrogen Production Coal Gasification (1)
Shell
Texaco

Steam Reforming of
Natural Gas

(1) Will include ROSE-SR concentrate or coke where applicable
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TABLE 1.2

PROCESS FEATURES AND RELATED VARIABLES FOR BASE LINE DESIGN

Pr cess Features: Variables:

Cleaning Method for Feed Coal Jig

Reactor Configuration Catalytic-Catalytic

Vacuum Bottoms Processing ROSE-SR

Hydrogen Production Coal + ROSE Concentrate
Gasification Utilizing TEXACO
Technology (2)

(2) Selection (Shell vs Texaco) was based on economics and engineering
judgement

TABLE 1.3

PROCESS FEATURES AND RELATED VARIABLES FOR OPTION 1

Process Features: Variables:

Cleaning Method for Feed Coal Heavy Media Separation (3)

Reactor Configuration Catalytic-Catalytic

Vacuum Bottoms Processing ROSE-SR

Hydrog-en Production- Coal + ROSE-SR Concentrate
Gasification Utilizing -TEXACO
Technology

(3) Coal reactivity is assumed to be same as that of the base case coal
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TABLE 1.4

PROCESS FEATURES AND RELATED VARIABLES FOR OPTION 2

Process Features: Variables:

Cleaning Method for Feed Coal Spherical Agglomeration (3)

Reactor Configuration Catalytic-Catalytic

Vacuum Bottoms Processing ROSE-SR

Hydrogen Production Coal + ROSE Concentrate
Gasification Utilizing TEXACO
Technology

(3) Coal reactivity is assumed to be same as that of the base case coal

TABLE 1.5

PROCESS FEATURES AND RELATED VARIABLES FOR OPTION 3

Process Features: Variables:

Feed Coal Cleaning by Jig

Reactor Configuration Thermal-Catalytic

Vacuum Bottoms Processing ROSE-SR

Hydrogen Production Coal + ROSE-SR Concentrate
Gasification Utilizing TEXACO
Technology

1-4



TABLE 1.6

PROCESS FEATURES AND RELATED VARIABLES FOR OPTION 4

Pr cess Features: Variables:

Feed Coal Cleaning by Jig

Reactor Configuration Catalytic-Catalytic with Vent Gas
Separation

Vacuum Bottoms Processing ROSE-SR

Hydrogen Production Coal + ROSE Concentrate
Gasification Utilizing TEXACO
Technology

TABLE 1.7

PROCESS FEATURES AND RELATED VARIABLES FOR OPTION 5

Process Features: Variables:

Feed Coal Cleaning by Jig

Reactor Configuration Catalytic-Catalytic

Vacuum Bottoms Processing Fluid Coking (4,5)

Hydrogen Production Coal + Coke Gasification
Gasification Utilizing TEXACO
Technology

(4) With DOE/PETC's approval, delayed coking option as shown in Table 1 has
been deleted from the scope of work. Exxon fluid coking technology was
selected as the only coking technology for the study.

(5) Coke is sent to gasifier.

1-5



OPTION 1



2. Option 1 (Uqu faction Feed Coal Cleaning by Heavy M dia Separation)

2.1 Design Basis, Criteria and Considerations

In this option, as discussed earlier, the feed coal to liquefaction reactor is cleaned by
heavy medium separation technique instead of Jig cleaning (baseline case). The coal
feed to gasifier, however, is cleaned by Jig (same as the base case).

The design basis, criteria and considerations for Plant 1 of this option is the same as
the base case with a few exceptions. These exceptions are mentioned below.

Ash content of clean coal: 8.6 wt%, dry basis
Product size from Plant 1: Shown in Table 2.1.

Table 2.1
Product Size From Plant I

Particle Size Wt/

1-1/2" x 1/4" 59.9
1/4" x 28 M 35.1
28M x 100M 5.0

Moisture 9.0

The directly affected plant for this option is the coal cleaning and handling plant (Plant
1). The indirectly affected plants are: coal grinding and drying plant (Plant 1.4),
atmospheric and vacuum towers of the coal liquefaction plant (Plant 2), critical solvent
deashing unit (Plant 8), hydrogen production plant (Plant 9), steam and power
generation plant (Plant 31), sewage and water treatment plant (Plant 34), ammonia
recovery plant (Plant 38) and phenol recovery plant (Plant 39).

In developing this option several key assumptions were made. These are:
1) The reactivity of coal (on MAF basis) in the liquefaction reactor is same as that of
the base case coal, which means that the conversion and the product slate from the
liquefaction reactor section are same as those applicable to the base case. This is a
very weak assumption. However, in absence of any suitable and available data it was
decid6cl-to-makeuse of thisassumption for this -study-.-'
2) Vacuum tower bottoms stream has the same composition as the base case.
3) 850+ fraction is removed from the vacuum tower by adding a side draw at lower
section of the vacuum tower and the fraction is sent to gasifier, Plant 9.

2-1



2.2 Process Description/Proc ss Flow Diagram for the Directly Affected Plant
(Plant 1-01):

Figure 2.1 is a simplified Block Flow Diagram for coal cleaning by heavy medium
separation. Here raw coal after being crushed to a top size of 1-1/2 inch is cleaned
and product separated using heavy medium vessel, heavy medium cyclones and
spiral separators.

The coal is initially screened into two size fractions, 1-1/2 inch x 1/4 inch x 0 using a
pre-wet and sizing screen. The 1-1/2 inch x 1/4 inch fraction is cleaned in a heavy
medium vessel at a specific gravity of 1.45. The clean coal is dewatered in a
centrifuge and stored.

The sinks from the HM vessel is crushed and combined with the raw 1/4 inch x 0
fraction from the pre-wet and sizing screen. They are deslimed at 28 mesh and
cleaned in heavy medium (HM) cyclones at a specific gravity of 1.6. The clean coal is
dewatered in a centrifuge and sent to storage. The HM cyclone sinks are dewatered
on a screen and sent to the Coarse Refuse Handling section.

The underflow from the desliming screens containing minus 28 mesh solids is
classified in a bank of classifying cyclones at 100 mesh. The cyclone overflow slurry
consists of high ash solids and water which is sent to a refuse static thickener.

The underflow from the classifying cyclones is cleaned in spiral separators. The spiral
clean coal is dewatered in fine coal centrifuges and sent to storage. The fine refuse
from the spiral separators is sent to the refuse thickener.

The thickened fine refuse (underflow) is pumped to the fine refuse settling pond. The
clarified overflow water from the thickener is reused.

The more detailed description of this plant is shown in the process flow diagram,
Figure 2.2. This figure includes product crushing, dewatering and water recovery
sections of the plant.

2.3 Material Balance for the Directly Affected Plant

Th6rhaterial-balcance for each train'for-this -directly affected plant -(Plant 1 -01) is shown
in Table 2.2. In addition this overall material balance per train of Plant 2 (Coal
Liquefaction Plant, the heart of the complex) is shown in Figure 2.3.

2-2
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2.4 Utility Summary for the Directly Affected Plant (Plant 1 -01)

The utility requirement for the liquefaction feed coal cleaning by Heavy Media
Separation plant is shown below in Table 2.3.

Table 2.3

Utility Requirement For Plant 1-01

Electric Power 12,402
Air, Scfm 5,769 *
Nitrogen Scfm 72,703 *

* Air and nitrogen required for Plant 1.4

2.5 Overall Impact

The overall impact on the entire complex due to the inclusion of Plant 1-01
(Liquefaction Feed Coal Cleaning by Heavy Medium Separation) instead of Coal
Cleaning by Jig (Plant 1, in base case) has been quantified based on throughput
adjustments to all the indirectly affected plants. Such effects are included in this report
in terms of overall plant configuration and overall material balance (sub-section 2.5.1),
overall utility summary (sub-section 2.5.2), overall water flow distribution (sub-section
2.5.3), and overall hydrogen flow distribution (sub-section 2.5.4).

2.5.1 Overall Plant Configuration and Overall Material Balance

The overall plant configuration and overall material balance for this option are shown in
the same figure, Figure 2.4.

2.5.2 Overall Utility Summary

The overall utility summary for this option in shown in Table 2.4.

2.5.3 Overall Water Flow Distribution

The overall water flow distribution for the entire complex is shown in Figure 2.5.

2.5.4 Overall Hydrogen Flow Distribution

The overall hydrogen flow distribution for the entire complex is shown in Figure 2.6.
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3. Option 2 (Uqu faction Feed Coal Cleaning by Spherical Agglorn ration)

3.1 Design Basis, Criteria and Considerations

In this option, as discussed earlier, the feed coal to liquefaction reactor is cleaned by
Spherical Agglomeration technique instead of Jig cleaning (baseline case). The coal
feed to gasifier, however, is cleaned by Jig (same as the base case).

The design basis, criteria and considerations for Plant 1 of this option is same as the
base case with a few exceptions. These exceptions are mentioned below.

Ash content of clean coal: 3.8 wtO/o, dry basis
Product size from Plant 1: Shown in below

Particle Size Wt/

1-1/2" x 28 34.7
3/8" (agglomerates) 65.3
Moisture 10.8

The directly affected plant for this option is the coal cleaning and handling plant (Plant
1). The indirectly affected plants are: coal grinding and drying plant (Plant 1.4),
atmospheric and vacuum towers of the coal liquefaction plant (Plant 2), critical solvent
deashing unit (Plant 8), hydrogen production plant (Plant 9), steam and power
generation plant (Plant 31), sewage and water treatment plant (Plant 34), ammonia
recovery plant (Plant 38) and phenol recovery plant (Plant 39).

In developing this option several key assumptions were made. These are:
1) The reactivity of coal (on MAF basis) in the liquefaction reactor is same as that of
the base case coal, which means that the conversion and the product slate from the
liquefaction reactor section are same as those applicable to the base case. This is a
vefy week assumption. However, in absence -of any suitable and- available.clata-it-was
decided to make use of this assumption for this study.
2) Vacuum tower bottoms stream has the same composition as the base case.
3) 850+ fraction is removed from the vacuum tower by adding a side draw at lower
section of the vacuum tower and the fraction is sent to gasifier, Plant 9.
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3.2 Process Description/Process Flow Diagram for the Directly Affected Plant
(Plant 1-02):

Figure 3.1 is a simplified Block Flow Diagram for coal cleaning by Spherical
Agglomeration, Plant 1.02. The more detailed description of this plant is shown in
Figures 3.2 and 3.3. Figure 3.2 is the process flow diagram of the conventional
cleaning section of the plant whereas Figure 3.3 is the process flow diagram of the
agglomeration section of the same plant.

This process combines conventional technology and spherical agglomeration. At first
the crushed raw coal is cleaned to produce a low ash (less than 4 percent ash) clean
coal, a high ash refuse, and a middlings product. The middlings product is then
ground and agglomerated. By recovering the naturally occurring low ash components
(26 percent of the plant feed) as final clean coal and rejecting the obvious high ash
refuse (10 percent of the plant feed), the more expensive grinding and agglomeration
is used for only 64 percent of the plant feed.

Conventional Cleaning Section: ROM coal, crushed to 1-;1/2 inch x 0, is wet screened
into three size fractions, 1-1 /2 x 1/4, 1/4 x 28 mesh and 28 mesh x 0 by a pre-wet
screen. The two coarser size fractions are then cleaned in coarse and fine coal heavy
medium (HM) vessels, respectively. These are operated at a specific gravity of 1.3 to
obtain a clean coal ash content of less than 4 percent. The clean coal is dewatered in
centrifuges and sent to storage.

The sinks from the fine coal HM vessel and the crushed sinks from the coarse coal
HM vessel are then deslimed at 28 mesh by desliming screens which also receive the
fine coal (28 mesh x 0) slurry from the pre-wet screen. The deslimed (1 /4 inch x 28
mesh) coal is cleaned in HIVI cyclones operating at a specific gravity of 1.8.

The float stream (middlings) is dewatered in centrifuges and sent to a surge bin
located in the grinding and agglomeration area.

The sinks from the HM cyclones (coarse refuse) is sent to the Coarse Refuse
Handling section.

The -underflow--slurry-(28 -mesh x 0) from- the desliming screens is _pumppd to a bank of
classifying cyclones for a 100 mesh classification. The cyclone overflow consisting of
high ash clay slime and water is sent to a refuse thickener for thickening and water
recovery. The thickener underflow, the fine refuse, is pumped to a settling pond.

The underflow from the classifying cyclones (28 mesh x 100 mesh) is dewatered in

fine coal centrifugal dryers and sent to the agglomeration surge bin.
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Agglomeration Section: The agglomeration section includes the grinding facility. The
Bechtel developed 'Selective Grinding' system is used to grind the feed to the
agglomeration reactors to a size of 45 microns (90 percent passing).

The grinding system consists of a primary ball mill, secondary ball mills, solid bowl
centrifuges, and spiral classifiers. The primary ball mill receives feed from the surge
bin and grinds the coal in water to a size of approximately 80 percent passing 100
mesh. The product from the primary mill together with that from the secondary ball
mills is fed to solid bowl centrifuges for a size classification at 45 microns. The
concentrate from the centrifuge is the ground product which will be sent to the
agglomeration circuit. The centrifuge cake which contains partially ground particles is
then diluted and cleaned in a spiral separator to remove hard and high ash particles.
The spiral sink product is rejected as refuse. The clean coal from the spiral separator
is ground in the secondary ball mills. The product from the secondary ball mill is
pumped to the solid bowl centrifuges which form a closed circuit with the secondary
ball mills.

The ground product is agglomerated using heptane as the bridging liquid.
Subsequently the agglomerates are enlarged to approximately 3 mm using asphalt as
binder. The agglomerates are separated from the associated water and mineral slurry
(tailings). The tailings stream is thickened in a thickener and clarified water recovered
for reuse.

The agglomerate product is steam stripped to remove heptane and then dewatered,
and sent to the storage.

3.3 Material Balance for the Directly Affected Plant

The material balance for this directly affected plant (Plant 1.02) is shown in Table 3.1
through 3.3. In addition the overall material balance per train of Plant 2 (Coal
Liquefaction Plant, the heart of this complex) is shown in Figure 3.4.
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3.4 Utility Summary for the Directly Affected Plant (Plant 1-02)

The utility requirement for this liquefaction feed coal cleaning by spherical
agglomeration plant is shown below in Table 3.4.

Table 3.4

Utility Requirement for Plant 1-02

Electric Power, Kw 69,975
Fuel Gas, MM Btu/hr 518
Air, Scfm 5,481 *
Nitrogen, Scfm 69,075 *

Air and nitrogen required are for indirectly affected Plant 1.4.

3.5 Overall Impact

The overall impact on this entire complex due to the inclusion of Plant 1-02
(Liquefaction Feed Coal Cleaning by Spherical Agglomeration) instead of coal cleaning
by Jig (Plant 1, in base case) has been quantified based on throughput adjustments to
all indirectly affected plants. Such effects are included in this report in terms of overall
plant configuration and Overall Material Balance (sub-section 3.5.1), Overall Utility
Summary (sub-section 3.5.2), Overall Waterflow Distribution (sub-section 3.5.3) and
Overall Hydrogen Flow Distribution (sub-section 3.5.4).

3.5.1 Overall Plant Configuration and Overall Material Balance

The overall plant configuration and overall material balance for this option are shown in
the same figure, Figure 3.5.

3.5.2 Overall Utility Summary

The overall utility summary for this option os shown in Table 3.5.

3.6 3 Overall Water Flow Distribution

The overall water flow distribution for the entire complex is shown in Figure 3.6.

3.5.4 Overall Hydrogen Flow Distribution

The overall hydrogen flow distribution for the entire complex is shown in Figure 3.7.

3-11

w



Acid Gas H20 5.2

t 36.5 
F)

69.2 32.4 SourWater Plant 38
Propane From 2, 3, 4, 5, 6, 8, 9, 11 NH3

Fuel as AmmoniaP,
4,407 BPSD 1,932.9 Recovery 20.3

29.5 3,744 GPM 243.7 STPD 1,653 GPM
Mixed Butanes To 538.9 1 1,870.9 jo To Plant 2

207.6 3,541 BPSD plt. 9 1,332.OV

Gas 177.0 Plant 3 0.3 Plant 39 1,330.2 Plant 34
to Incin. Gas Plant Phenol Wastewater

388.0 .:2tj Tail Gas 1.2 Recovery 2,659 GPM Treatment
Ai # Makeup 00. 1

327.3 36.5 9 2.7

IF 165.6 t I I Phenol Product
14 3 .9 32 TPD

Sulfur Plant 11 Acid Gas 20.0 F Plant 6 77.0 Purge H2 & Gases
Sulfur Recovery Hydrogen

61.7 4.5 Purification 3.3
740.4 STPD r 1 9.3

AL V Treated 3.3
4r 52.0 To H2 Purge 160.2 Naphtha

Rxn 117.9 S. W. 38.5 Purge H2 & Gases I - 224.3

H20 177.0 IF t IF 207.6 C5-3500 F 229.3 Plant 4 Naphtha
P 1 00 19,195 BP5

Plant 1 Plant 1.4 Plant 2 671.0 Naphtha
ROM Coal 1, 311.5 (M F) 1,311.5 (MF) t 2,5 H2 H2 Treater

Coal Cleaning/ Coal Grinding & - P_ Coal 502.1 f_

510.6 (MF) PSD Lique action r- -n Rxn Water2,410.4 (M F) 15,738 T o S. Watejr28,924 TPSD Preparation P_ Drying 51 AL Lique 80.6 + (350-F 850-F) 21.7 67.7 99.9
47.4 Light Distillate 7,803 BP5D

Refuse 298.1 H2 RecycTe as Plant 5 300.1
b- H

t eavy Distillate 21,635 BPSD588.3 (MF) 298.1 252 MSCFM 18.7 GasOil 193.6
7,059 TPSD 49 H2 Treater Gas Oil 13,310 BPSD

To Extract H *2
Sour Rxn Recycle

Water Wat r Plant 8-1 J502.1 2-0 .7

(Rose -SR) I T
(850+) Solids/Liquid 1000* F + 11.9 To Rxn

Extraction Sour WaterWater
Acid Gas 120.1 1 51.0 , [Ash Concentrate

204.0 92.5 H2

51-0.6-(MF) - - -
Clean Coal 6,127 TPSD IF 1898.0 Tail Gas FIGURERxn 685.0- Plant 9 0 Plant 10Steam Plant 31 H2 Production by 49 02 Air Separation Air DOE/P512 M lb./ hr. Steam and Medium BTU Gas Coal Gasification 746.8 3,203.6 COAL LIQUE1Power 63.8 -4 212 MMSCFD 1011 MMSCFDGeneration 120.6 102.2Power 93.9 MMSCFD 6.8 ).61 2,456.8455 MW COAL LIQUE1

I IF 1,447 TPSD 799 MMSCFD LOW ASHNG To Sour Ash to Disposal N2 to 1.4,2 (SPHERICAL AGGL3352 MMBtu/hr Water Plant Services OPTIC

Revised 02/03/93 Notes: OVERALL PLANT C(
1. Flow rates are in MLB/HR unless noted and on dry basis AND

1091056-1 2. Minor streams including steam, water, sour water, and make-up amine are not shown on this diagram OVERALL MATER3. Flow rates around plants #38, 39, 34 are shown on wet basis



U) LO

40

m C-i L(i
40 C-i Ul) to go

Go
Lg)

U;

CL (D cy U) co OD -W
0) cr) 0 f- - co

s Ck co M q co
CO

co 0 to
co cm 0 m 0 co
It a C q R i
cm

-ssz w
It s

0 C-i 06 C.;

cm LO Lf) V CD Cl a -
CM C" U) to 04 CD 10 Co CV P.
C*j Q 0) U) CY co w w co U) OD IV

w ci ci ci 46 ci CA) cli

0 0 
to w U)

-j 
V-

go co Nc C 40 CM ODC> co I- tq n't Cs - Cs Cli
-J co co co 0) co 0) co U CF) v C604 - CM C.J U) 0) V- C-i CD

C-13 - cq q
m Z

co x 10 CID 0
C-; IL LL v- CD ca 0 0 coot 0 a co U)a 2 n n !Z a - -
LU

90
_j 0
-i X a q ;s 6 -- o Co 0) cc co 0U. 0) co a 0 to CO - V)q loci 0 a! I C8 Q C* CY P CV)
w cr) IV CY (600, ci C6 Ci
> L n Cl) CV) cto co v CM 0) CD cm
09

10 0 CY CID 0 0 CY CY CD0 LL C) - N le Q U) 4n U) 00) OCO(Do OD 0)L) co C6 t6 46 C6IL 0) cm co (D cm cm mI E cr) cr) It
LAJ

a5 CL LL Co toa cc0 m CsCf)
U)

U) OD Go m cr) 0 Nr v Q IV N 0) CD cy lw CV) IV co co - V U)P IW CID - r- r- V - - 01 CO - U) CO U) V - 0) Lf) IV 0 - cnCD 0) 0) 0) 0 - M v N 0) 0 r- Q 40 co OD cm V) OD OD3: e a ci C6 ci C6 d C6 C6 C6 a C6 tz ci vC C6
CL CO U) V co to U)

V

cc OD 0 P A 'N P, 0) M C#) V) 0
CO M co CO (D CM 0) to CY

EC5 CL
E

cm c 0> IDca cc rn
w Cd

CD ca 'Do & a R.2 100 cc C) w = CCSCl CD - -W 4D clr- AR LL 3: W 0 z3- .2 -E ) -c0 s cm ca 10 Z (D 0 0 U) U cOL o E o r_ 0
CL r >,'D CL > = * co i5.0.s O=Wada: o C! 80 0 m>. r 0 - cc 0) C\j co -j10 0.0 z .0 z;cr cis -2a C cc

CL cc 4, 0 (D cc 0 C 0 - a: It 0 Mcc = = CD '0 k M.0 cf) E to 3: r--0 p 7a CD E to a E - CL 0 00 -W ts cis 0 10 a0 ca 0 go 0. co -0 CL E = c - CD 3: 15 0= E 0) cr0 0 0 ca 0 CIS >, Cm .!= , o 0 w CD 2 ccl 0 CD 0 - E = 12 cc0 0 0 0 z 0 X: 0 m < co 0 m - ED U) cc -;t 0 s 9? Coo < CL M z

0 a C\l (W) 1% to W r co 0)z6 C4 cv) -w &0 (D co 0) - 04 m M Cl) CV) c m mICL 3-13 0



240 (Reaction Prod.)

267 (ATM) 
6 (Fuel) 6

---------------
Coal 461 (Coal) 321 54
Mine 2,513 (Re 10 Plant Plant - Plant 5 lant SteamPlant lant1 .4at 8L fuse) 1 96 1.4 494 (Steam) 2 13 P- 3 28

2,424 5
44 Plant

2,469 30 (Tail Gas-) 8
38 (Wash)

1,328 96 1,370 (Shift) Od 1,653 k

PI an 

1 370 (Sh
Plant

34 95 (Oi I & Sludge) Plant Iant 4034 t 95(( Plant
9 966 4

582 (Discharge) b, P- 28
9 go (L P-

2,366 458 0 (Landfill) 95 (Slag) 
2 (Reaction Procl.)

(CT B D) 11,075 966 73 (Wash) 9 (Reaction Prod.)
Water 1,196 + + + 5

12,916 Plant 432 (Utility, All Plants) 1,075
Source

32t 9'at 131- 32 10 Plant 128 1 ant 888,234 (Evap.) 123 123 38 10 (Stm.) 23 5Ilant

935 100 (Pota bl e) 70
OEM)60 (DEM)

875 Vent 10
4(DEM) 1 2,659 762

322 (13D) Plant 104 (React 0,11
ion) 

7P'lanilPlant 2 (Cond)
31 - Plant 1,653,, 13 Plant

6 (Air) 11 P- 39 1 66

Phenol Amine
1006 Products MakeuP 4

553 (Cond. to Stm. Gen.) 4
4! 60 (Wash)

T -d 1,006 
FIGUF

Notes: 
LDOE

1. Flows are for normal operation and in GPM COA LIQU

LOW AS
(SPHERICALAG(

1091,56-1 

OPT

OVERALL W,
DISTRIB



z
z 0o

N
0 p 0

cliv
-0z

LLI uii z DL) Lu z U. CC
7 CV cr) LuLLI CD C) c; :5a: 0 F- CL

Z za: U)
=) !5 < 0IL CL CL -j 0

LL 0
z
LU

r.. w CO wi wLU LLJ cnL7 0 L)U) tr) w co C) C 4 6-7 0 a:c; z z C.D 6 LQ X 0 1- z cc LuC4 0 0 cc :) m 0CL p-CL CL 23 ci >. CL
Z5 uj

z cc cr. LLJ ui cr m

0 m
!C L5 -j <

C,) ui U. 0
Q (6 C < cc CC

CV LL Lo -j
_j LU F- C) a:

CC z > rj)
CL 0 0 << >- !5 < >-

CL L) -i CL Z M a. d
qtA CYA

0Lu
F- 0
Z 0:

0

CL m CL
Cl) 0uj 0
8 10
z :t

3-15



OPTION 3



4. Option 3 (Th rmal-Catalytic Liquefaction R actor Configuration)

4.1 Design Basis, Criteria and Considerations

In this option, as discussed earlier, the reactor configuration is changed from the base
case configuration (catalytic-catalytic) to thermal-catalytic, where first stage is the
thermal reactor and second stage is the catalytic reactor.

This option was developed utilizing the following methodology for reactor sizing:

Use Wilsonville Run 250 D for operating conditions, conversion and yields. The
coal liquefaction overall yield is shown in Table 4.1.

Maintain total coal feed rate through Plant 2 (Coal Uquefaction Plant) same as
in base case.

Compare the space velocity (based on catalyst volume) between second stage
catalytic reactor for the baseline and this option (1.12 vs 0.72 Lb MAF
Coal/Hr./LB catalyst, respectively). Refer to Table 4.2.

Calculate the reactor volume and the number of reactor trains to account for
the change in space velocity mentioned above for the second stage reactor
(catalytic). Note that directionally the reactor volume per train will be higher
than the base case. Also HRI design indicated that for the baseline design the
weight of the reactor is the primary constrain for reactor size, and consequently
the number of trains required for this operation will be more than those for the
base case.

Calculate the reactor height keeping the maximum reactor diameter allowable
based on weight.

Include ebullating bed pump for thermal reactor to induce pi oper mixing to
avoid unacceptable axial temperature gradient.

Calculate corresponding coal throughput per train.

Calculate the thermal reactor 'volume-, (first -stage) -using -Wilsonv -ille exp -erimental
space velocity data (Run 250 D) and the number of trains selected.

Keep the diameter of the thermal reactor (first stage) same as that of the
catalytic reactor (second stage). Verify by using gas velocity correlation.
Diameter being known, calculate height of the reactor from volume, already
calculated.

The wall thickness will be assumed to be same as HRI design. The potential
minor difference is deemed to have insignificant impact on plant cost.
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TABLE 4.1

COAL LIQUEFACTION YIELD

Yields wt% MAF Coal Feed
Overall

H2S 3.34

H 20 9.51

NH3 1.63

Co 0.07

C02 0.16

C1 2.69

C2 2.09

C3 2.22

C4 0.79

C5-350OF 12.51

350-450OF 6.31

450-650OF 21.35

650-850OF 17.94

850-1000OF 5.00

10000F+ 13.08

Unconverted Coal 7.21

Phenols 0.30

Ash 12.96

H2 Consumption -6.20
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TABLE 4.2

Comparison of Critical Parameter
for Baseline and Therm-cat Option

Parameter Baseline Design Thermal-Cat

Temp, OF 
(Run 257E) Option (Run 250D)

Stage 1 790 825
Stage 2 760 740

Coal Space Velocity
(Lb MAF Coal/Hr./Lb. Cat)

Stage 1 1.12 (37.1)*
Stage 2 1.12 0.72

The number in parenthesis is in Lb MAF Coal/Hr./Cubic Ft. Reactor Volume.

The directly affected plant is, of course, the liquefaction plant, Plant 2. The indirectly
affected plants are the remaining plants in the complex.

In developing this option a key assumption was made. This assumption is:

Extra 850 - 10000 F (as compared to the base case yield) is removed from the
vacuum tower by adding a side draw at lower section of the vacuum tower.
The side draw stream is sent to the gasifier, Plant 9. This allows the same
composition of feed to Plant 8, the critical solvent deashing unit (Kerr McGee's
ROSE SR technology)

Directly affected Plant (Plant 2):

Reactor sizing for both reactors (first stage thermal and second stage catalytic) are
shown in Table 4.3.
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TABLE 4.3

REACTOR SIZING

Dia. (ID)(') Length Thickness Weight Number of
Service Ft. Ft. Inches ST Trains

First Stage 15 38 11.6 550 7
Reactor

Second 15 90 11.6 1300 7
Stage
Reactor

Material of Construction: (same as base case)
2-1/4 Cr. 1 Mo with 374SS overlay, refractory lined (6").

(1) Metal inside diameter
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4.2 Proc ss Descripti n/Proc ss Flow Diagram for the Dir ctly Aff Ct d Plant

The plant consists of three sections. These are: Slurry Preparation and Liquefaction
Reaction, Primary Separation and Product Fractionation. These three sections are
schematically shown in process flow diagrams, Figures 4.1 through 4.3, respectively.

Slur!y Preparation and Liquefaction Reaction

Coal, which has been pulverized and dried in Plant 1.4, is mixed with recycled oil from
the downstream plants to form a slurry for feed to the coal liquefaction reactors. The
recycle oil used as solvent for the process comes from four sources: slurry oil from
the Slurry Hold Tank, slurry oil from atmospheric bottoms, the lower sidestream
product (850-10000F) from the Vacuum Distillation Tower, and the extract product from
the Critical Solvent Deashing Plant (ROSE-SR), Plant 8.

Slurry preparation consists of prewetting and mixing. The prewetting occurs in a twin
screw mixer in which the 850-1000OF product, which have been cooled in air-fin
exchanger (E102) to 1800F, are sprayed on the pulverized coal as it is being turned
over in the mixer. This mixture is then fed into the Mix Tank (C101) where it is mixed
with the solvent from the other three sources. Those oils are cooled in an exchanger
producing 600 psig steam (E101) before entering the Mix Tank. The Mix Tank is
equipped with a high-speed agitator. Coal slurry flows to the Slurry Surge Tank
(C102) which also contains a mixer to keep the coal in the slurry. The Surge Tank is
vented through a scrubber (C103), where the vapors are contacted with a portion of
the solvent. The vapors from the scrubber are cooled in an air-fin exchanger (E103)
to 130OF and separated into three phases in the Slurry Overhead Receiver (C104).
The vapor from that drum is sent as fuel to the Hydrogen Heater (F102). The
hydrocarbon liquid is sent to the Atmospheric Tower. The sour water stream is
withdrawn to the Sour Water Flash Drum (Cl 16) and -eventually to Plant 34.

Material from the Slurry Surge Tank is pumped by two Slurry Booster Pumps
(G103/G104) operating in parallel to the suction of three high pressure reciprocating
Reactor Feed Pumps (G105/G106/G107) in parallel. About one-third of the flow from
the Slurry Booster Pumps is recycled back to the Slurry Surge Tank to help eliminate
dead spots in the tank where coal can settle out of the slurry. The Reactor Feed
Pumps move the coal slurry through the Slurry Feed Heater (F1 01) to the reactors.

As shown on the attached Figure 4.1, the make-up hydrogen stream from coal
gasification plant (Plant 9) is combined with the recycle hydrogen stream from Plant 6.
A portion of the combined stream is then mixed with the recycle hydrogen stream from
the Recycle Hydrogen Compressor (K101) and is first preheated by exchange against
the reactor effluent in exchangers E106 and E107. The other portion of the combined
hydrogen stream is injected into the coal slurry feed at the inlet to the Slurry Feed
Heater (F101) in order to reduce the possibility of coke formation in the heater.
injection of hydrogen into the coal feed slurry also tends to reduce the viscosity of the
slurry mixture and results in a lower pressure drop in the slurry feed heater coil. The
hydrogen and coal slurry mixture is heated and then fed to the First Stage Reactor
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(C105). This reactor is thermal in nature and without any catalyst. The remaining
reactor hydrogen stream is fed to the First Stage Reactor after being heated in the
Hydrogen Heater (17102).

The coal slurry-hydrogen mixture from the Slurry Feed Heater and the hydrogen
stream from the Hydrogen Heater are introduced into the bottom of the First Stage
Reactor. The reactor operates at approximately 790OF average reactor temperature
and 3050 psig. The reactor operating temperature is controlled by adjusting the Slurry
Feed heater outlet temperature to achieve the desired conversion level in the reactor.

Effluent from the First Stage Reactor is quenched with cold hydrogen from the recycle
hydrogen compressor and introduced into the bottom of the Second Stage Reactor
(C106) which is catalytic in nature and, in operation, identical to the base case. The
interstage quench hydrogen flow rate is controlled to maintain the Second Stage
Reactor in heat balance at 760OF average reactor temperature.
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The reactors incorporate the principle of the ebullated-bed operation. The entire mass
in the reactor is held in a fluidized ebullated state by recirculating coal-oil slurry from
the top of the reactor through the Ebullating Pumps (G108 and G109) and back into
the bottom of the reactor. The ebullated bed ensures the reactor's near isothermal
operation under the extreme exothermic reactions involved. Since the coal particles
are much finer than the extrudate catalyst, a separation can be made between these
solids such that the coal and ash particles are entrained with the liquid-gaseous
reactor effluent products, while the catalyst remains behind in suspension in the
reactor.

Prima[y Separatio

As shown on Figure 4.2, the effluent from the top of the Second Stage Reactor is sent
directly to the Hot High Pressure Separator (C107) at 760OF and 3000 psig. The
overhead vapor, after being separated from the slurry, is cooled to 550OF in exchange
with recycle and makeup hydrogen in exchanger E107 and enters the Warm High
Pressure Separator (Cl 10). The temperature of the separator is set high enough to
prevent precipitation of ammonium salts. The overhead of the warm separator is
cooled to 130OF in exchange with recycle and makeup hydrogen in exchanger E106
and in air-fin exchanger E109 before entering the Cold High Pressure Separator
(Cl 13). Wash water is injected ahead of the air-fin cooler for control of ammonium
salt deposition as the vapor is cooled. The vapor from that separator is compressed
in the Recycle Hydrogen Compressor (K101) and returned to the reactors as recycle
hydrogen. A portion of the stream is purged from the system to the Hydrogen
Purification Unit (Plant 6) to prevent the build-up of methane and other non-
condensables in the system. The water phase is withdrawn to the Sour Water Flash
Drum (Cl 16) and eventually to Plant 38 for recovery of anhydrous ammonia.

The liquid from the Hot High Pressure Separator is flashed to 100 psig in the Hot Low
Pressure Separator (C108). The vapor from the Hot Low Pressure Separator is cooled
from 750-F to 450OF in exchange with the Warm Low Pressure Separator liquid (E104)
and in an exchanger producing 150 psig steam (E105). The mixed vapor-liquid stream
then enters the Warm Low Pressure Separator (Cl 11) along with the liquid from the
Warm High Pressure Separator. The temperature of the separator is set high enough
to prevent precipitation of ammonium salts. The vapor from the Warm Low Pressure
Separator is cooled to 130OF in an air-fin cooler -(El-10)--and enters the Cold Low
Pressure Separator (Cl 14) along with the liquid from the Cold High Pressure
Separator. Wash water is injected ahead of the air-fin cooler for control of ammonium
salt deposition. The vapor from this separator is sent to the Hydrogen Purification
Plant, the liquid is sent to the Product Distillation Feed Flash Drum (Cl 17), and the
water phase is sent to the Sour Water Flash Drum (Cl 16). The liquid from the Warm
Low Pressure Separator is heated by the feed to that vessel in exchanger E104 and
sent to the Product Distillation Feed Flash Drum. The liquid from the Hot Low
Pressure Separator is further flashed to 20 psig in the Recycle Slurry Hold Drum
(C109). The vapor is cooled in air-fin exchanger E108 and sent to the Recycle Slurry
Hold Drum Overhead Accumulator. The vapor from this drum is sent to Plant 6, the
liquid is sent to the Product Distillation Surge Drum, and the water phase is sent to the
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Sour Water Flash Drum. Some of the liquid from the Recycle Slurry Hold Drum is
pumped as recycle solvent back, using pump G1 10 to the coal slurry tank with the
remainder being sent to the Product Distillation Surge Drum.

Product Fractionation

As shown in Figure 4.3, the liquid products from the three low pressure separators in
the coal liquefaction plant are sent to the Product Distillation Feed Flash Drum (Cl 17)
from where the combined stream is pumped through the Atmospheric Feed Heater
(17103) to the Atmospheric Distillation Tower (Cl 18). Vapors from the surge drum are
vented directly to the atmospheric tower. Two products are taken from the
Atmospheric Tower Overhead Accumulator (C120): a naphtha product (113P - 3500F)
which is sent as feed to the Naphtha Hydrotreater via Plant 3, where Naphtha is used
as lean oil; and a sour water stream which is sent to the Wash Water Surge Drum
(Cl 15) on the Coal Liquefaction Plant. An overhead vapor stream from the overhead
accumulator is compressed by Compressor (K102) and sent to Plant 6. A sidestrearn
product (3500F+) is withdrawn from a sidestream stripper (Cl 19) and sent as feed to
the Gas Oil Hydrotreater via cold (11 OOF) intermediate tankage. The bottoms stream
off the atmospheric tower is pumped to two dispositions: as recycle solvent back to
the Coal Slurry Tank with the remainder being sent to the Vacuum Feed Heater (F104)
ahead of the Vacuum Distillation Tower(C122). Three products are taken overhead
from the vacuum tower: a light gas oil product (4500F+) which is sent to the Gas Oil
Hydrotreater via the same intermediate tankage as the atmospheric sidestream
product; an overhead vapor stream which is compressed and sent to Plant 6; and a
sour water stream which is sent to the wash water surge drum on the Coal
Liquefaction Plant. An upper sidestrearn product (z550OF - 8500F) is withdrawn and
sent to the Gas Oil Hydrotreater via hot (4000F) intermediate tankage. A lower
sidestrearn product (850OF - 10000F) is withdrawn from a sidestrearn stripper (C123)
and sent as recycle solvent back to the Coal Slurry Tank. The vacuum tower bottoms
stream is sent to the solids-liquids separation unit, Plant 8.

4.3 Material Balance for the Directly Affected Plant

The material balance per train for Plant 2 is shown in Table 4.4 and Figure 4.4.

4-9



0
4

4) 0 C0. WA\ C13
4) a.Cp 46\, Wl co10 %- (a 0

cc :) - 0 clCL CL -

Cl)

r cz

E 
CY

0
CL
too

CRCY

Ul) 0
1-1
0 L9 w cc 0

w
x w cm:3 CL

4)
w

cri

C4

E
cm

Lc5i

0 c
3: -5 wo

3: CIOc

4-10



.(D CV) Ul)
4- <:O>,!
P> -6 q> q> 5
0- CL a ZL- CL cot 00 0

0 cc cc
<k c 0

C4 
t5

CL co
LLI

;i 8 L-

0 T- 0)
C*j

cli V-
LLI 0LLI -;t

L)

04 w

0

E LU

0

CM E
ri Cj

m T- 0

CD
w E

04
ej

w co 04
C14 0 .6"

cmU) m F

C)
x .9 0

co v U, CO U.t1T- I "

In > 00 Iwo

cr

C
0

U-

OL

C%

2!%M! "
E r-f

u
CL

E
2U.

4-11



Table 4.4
OVERALL MATERIAL BALANCE PER TRAIN OF
COAL LIQUEFACTION PLANT, (PLANT 2)3 PLANT INPUT

MAKEUP RECYCLE WASH ROSE TOTAL RXN
COAL H42 H42 FR 90 WATER STEAM EXTRACT INPUT DELTA

COMPONENTS 9/hr 9/hr P/hr 9/hr 9/hr #/hr /hr 9/hr

N2 15O 42 201
H2 11357 2018 14275 -11175
H420 4155 82 157002 35316 19664 17141
H2S 1 1 6020
NH13 0 0 2938
CO 30 30 1201C02 0 0 28
Cl 1172 1172 44.
C2 6we 609 3767
c3 486 466 4001
04 1SO 156 1424
CS-35 8 80 22548
350-450 1 1 11373
450-650 0 0 38481I650-850 0 84 84 32336
850-1000 0 390 390 0012
1000+ 0 118501 118501 23575
PHENOLS 0 0 541

UNCONVERTED COAL 180238 0180238 -167243
ASH 2335 __ __ ___ __ __2335__ __

TOTAL 207752 11516 5567 157002 35316 11006 53630 -0

PLANT OUTPUT

Stream No. 2.7 2.8 2.9 2.10 2.16 2.11 2.12
PURGE ROSE UNIT SOUR TOTAL

PURGE H2 GASES NAPHTHA GAS OIL 850-1000 FEED WATER OUTPUT
COMPONENTS 9/hr 9/hr 9/hr 9/hr 9/r 9/hr 9/hr M/r
N2 141 60 201
H2 2316 784 3100IH20 300 967 2es 212240 213785H2 1698 16ns 13 2611 8021
NI-3 407 34 2487 2938
co 100 47 156
002 197 20 71 288

CI 3515 2504 1 1 8021

350-450 0 375 350 9981721 11374
450-650847 1 38480
6&W-850 322 0 432419
850-1000 71 2319402

10004202 142166
PHENOLS 541 541

UNCONVERTED COAL 12995125

TOTAL 11775 18475 19898 80291 7422 1862 219755 138W8

4I1



LIJ

CY ION,

0Z 21

++ E
0

IN Clx Cj Ln Go
U.
0 Z + Cm C cm

z 2: C*j c
R

to
LU
IL C-4
LU0 z co
Z 5 1

Lucc in CL_j z
cc 0.

z CM
o

S

U-UJ
LU M

Q C4 3: Ms
75 r-

U. 0

ui

§ 
1 

.

vcr)
4) 4)

CY

Cm 0) LM
a Ln ul
co 0. T-
IV- A Ej

lt CY
IN z FS

Cl Lo cn

4-13



4.4 Utility SUMMary for the Directly Affected Plant

The utility requirement for the directly affected plant, Plant 2, is shown in Table 4.5.

TABLE 4.5

UTILITY REQUIREMENT FOR PLANT 2 (7 TRAINS)

Steam
600 psig superheated, lbs/hr 6,408
600 psig saturated, lbs/hr -171,668
150 psig saturated, lbs/hr -103,739
50 psig saturated, lbs/hr 64,613

Cooling water, gpm 9,321
Electricity, KW 67,921
Fuel Gas, MMBtu/hr 1,255
Nitrogen, SCFM 823
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4.5 Overall Impact

The overall impact on the entire complex due to the inclusion of Plant 2.3-01, Thermal-
Catalytic Reactor (thermal being the first stage and catalytic being the second stage,
instead of having both stages catalytic, which is the case in base line design) has
been quantified based on the throughput adjustments to all the indirectly affected
plants. Such effects are included in this report in terms of overall plant configuration
and overall material balance (sub-section 4.5.2), overall water flow distribution (sub-
section 4.5.3), and overall hydrogen flow distribution (sub-section 4.5.4).

4.5.1 Overall Plant Configuration and Overall Material Balance

The overall plant configuration and overall material balance for this option are shown in
the same figure, Figure 4.5.

4.5.2 Overall Utility Summary

The overall utility summary for this option is shown in Table 4.6.

4.5.3 Overall Water Flow Distribution

The overall water flow distribution for this entire complex is shown in Figure 4.6.

4.5.4 Overall Hydrogen Flow Distribution

The overall hydrogen flow distribution for the entire complex is shown in Figure 4.7.
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OPTION 4



5. Opti n 4 (Catalytic-Catalytic Liquefaction R actor Configuration with V nt
Gas Separation Option)

5.1 Design Basis, Criteria and Considerations

In this option, as discussed earlier, the reactor configuration is changed from the base
case configuration (catalytic-catalytic) to catalytic reactor for both the stages with inter
stage vent gas separation. The design basis is same as the base case.

5.2 Process Description/Process Flow Diagram for the Directly Affected Plant

Figure 5.1 is a process flow diagram for this option. The objective of adding interstage
separation between the two reactors is to remove the light ends formed in the
hydrocracking reactions in the first stage reactor and thereby to reduce the vapor
loading in the second stage reactor.

This option differs from the base case by the addition of a vapor-slurry separator
(C-127) between the two reactors C-105 and C-106. The effluent from the first stage
reactor goes through C-127 where the vapor and slurry streams are separated out.

Discussions:

For the cases where the capacity per reactor train is limited by the vapor loading in
the second stage, the option of adding ihterstage separation could potentially reduce
the total number of reactor trains. However, for the base line case, the capacity of the
reactor trains is limited by the total reactor weight, such that the addition of interstage
separation has no impact on the number of reactor trains needed. Due to the
reduction of gas flow by the inclusion of interstage separation, the second stage
reactor diameter can be directionally reduced (for a fixed space velocity). This
reduction could have reduced the number of trains of second reactor. However,
because the number of trains for the first reactor is fixed, this approach does not allow
any practical solution.

Use of interstage separation may be beneficial with a different design basis. Two of
such cases are : 1) higher temperature or more active catalyst and 2) low/high
temperature -reactor staging.

In the first case, there will be smaller catalyst volume for a fixed level of coal
conversion which will result in a higher space velocity. This will ultimately reduce the
first stage reactor weight and therefore will not be limited by maximum weight of the
reactor. In this scenario reduction of vapor loading in the second reactor could
potentially reduce the total number of trains for reactors.
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In the second case (low/high temperature staging), it may be possible to utilize the
exothermic heat of reaction to maintain the heat balance in the second-stage reactor.
In this case the hydrogen requirement to the second-stage would no longer be set by
heat balance considerations. The hydrogen requirement would be set by the desired
hydrogen partial pressure in the reactor. This would result in lower hydrogen
requirement in the second-stage of a two-stage system, and a potentially attractive
option for interstage separation.

In addition, this approach may also allow split flow of make-up hydrogen to the
second reactor.
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5.3 Material Balanc for the Directly Affected Plant

The material balance per train for Plant 2 is shown Table 5.1 and Figure 5.2.
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TABLE 5.1
El OVERALL MATERIAL BALANCE PER TRAIN OF COAL

LIQUIEFACTION PLANT (PLANT 2)
PLANT INPUT

STREAM NO. 2.2 2.3 2.4 2.6 2.S 2.1
MAKEUP RECYCLE WASH ROSE RXN TOTAL

COAL H2 H42 FR 96 WATER STEAM EXTRACT DELTA IN PUT
COMPONENTS #/hr #ihr *dhr 9/hr 0/hr 9/hr #/hr #,1w

N2 223 70 293
H42 15000 4081 -15645 4341
1420 5817 102 165232 49442 23907 244518

H .12S 2 -7217 7218
NH3 0 3507 3507
CO 42 151 193
002 0 353 353ACI 1501 4643 8144
C2 862 3608 4470
C3 an8 3835 4503

C4291 1093 2284
Cs-m5 171 40676 40847
350-450 1 18950 18952
450-M5 0 6331 63361
650-85 0 76 53898 53974
850-1000 0 353 1665 2018

1000+ 0 107317 21171 128488
PHENOLS 0 757 757
MEA 1 I

UNCONVERTED COAL 252333 0 -234140 18193
ASH 32702 0 32702

TOTAL 290852 16123 7794 165232 49442 107746 0 637180

PLANT OUTPUT

STREAM NO. 2.7 2.8 2.9 2.10 2.11 2.12
PURGE ROSE UNIT SOUR TOTAL

PURGE H42 GASES NAPHTHA GAS OIL FEED WATER OUTPUT
COMPONENTS I/hr #/hr #/hr 9/hr 9/hr 9/hr I/hr

N2 205 88 293
142 3442 899 4341
1420 307 967 486 242829 244589
142S 2022 2042 23 3131 7218

N143 483 40 2984 3507
CID 135 58 1931002 173 80 100 3S3
Cl 3623 2518 2 1 6144

02 2007 2436 27 4470
03 1315 3032 156 4503
04 161 1781 342 2284

C-= 8 &W3 34227 09 88w 40847

850-1000 2092019

1000+.24 128488
PH4ENOLS 757 757

UNCONVERTED COAL 18193 18193

ASH 32702 327025TOTAL 13968 19350 358194 134208 181478 252301 637189
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5.4 Utility Summary for the Directly Affected Plant

The utility requirement for the directly affected plant, Plant 2, is shown in Table 5.2.

TABLE 5.2

UTILITY REQUIREMENT FOR PLANT 2 (5 TRAINS)

Steam 600 psig superheated, lbs/hr 5,565
600 psig saturated, lbs/hr -149,090
150 psig saturated, lbs/hr -90,095
50 psig saturated, lbs/hr 56,115

Cooling water, gpm 8,095
Electricity, KW 59,621
Fuel Gas, MMBtu/hr 1,066
Nitrogen, SCFM 715
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5.5 Overall Impact

The overall impact on the entire complex due to the inclusion of Plant 2.3-02 (Catalytic-
Catalytic liquefaction reactor with vent gas separation) instead of having both stages
catalytic (which is the case in base line design) has been quantified based on the
throughput adjustments to all the indirectly affected plants. Such effects are included
in this report in terms of overall plant configuration and overall material balance (sub-
section 5.5.1), overall utility summary (subsection 5.5.2), overall water flow distribution
(sub-section 5.5.3), and overall hydrogen flow distribution (sub-section 5.5.4).

5.5.1 Overall Plant Configuration and Overall Material Balance

The overall plant configuration and overall material balance for this option are shown in
the same figure, Figure 5.3.

5.5.2 Overall Utility Summary

The overall utility summary for this option is shown in Table 5.3.

5.5.3 Overall Water Flow Distribution

The overall water flow distribution for this entire complex is shown in Figure 5.4.

5.5.4 Overall Hydrogen Flow Distribution

The overall hydrogen flow distribution for the entire complex is shown in Figure 5.5.
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6. Option 5 (Fluid Coking of Vacuum Bottoms)

6.1 Design Basis, Criteria and Considerations

In this option, as discussed earlier, the vacuum bottoms processing step is changed
from critical solvent extraction (Kerr McGee's ROSE-SR) to FLUID COKING (Exxon's
Technology).

The directly affected plant in this case is the Kerr McGee's ROSE-SR plant (Plant 8)
which is replaced with FLUID COKING plant (Plant 8-02). Indirectly affected plants
are all other process plants in the complex.

The liquefaction reactor yield data were generated with the help of SEI at Wilsonville,
Alabama and Amoco at Naperville, Chicago. The yield data as shown in Table 6.1 is
utilized as the design basis for material balance for coal liquefaction plant (Plant 2).

In developing this option several key assumptions were made. These assumptions
are:

Gas oil fraction from vacuum tower is recycled to maintain same solvent to MAF
coal ratio as the base case.

Coker liquid is fractionated and mixed with the respective Plant 2 products for
hydrotreating purpose. However, the percentages of these additions are being
very small (naphtha 2 wt% and gas oil 4 wtO/o) no changes in operating
conditions of the naphtha and gas oil hydrotreaters are considered.

Hydrotreater yields for both naphtha and gas oil are same as they are in the
base case.

As a result, the throughput capacities for Plant 4 (naphtha hydrotreater) and Plant 5
(gas oil hydrotreater) are changed to 78% and 79% respectively.

The overall material balance for coal liquefaction plant (Plant 2) and Coker plant (Plant
____8-02) are shown in Figure 6.2 and Table 6.2, respectivel . The overall material

balance for the entire complex is shown in Figure 6.3 which accounts for all the
necessary throughput adjustments to all the indirectly affected plants.
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TABLE 6.1

FLUID COKING OPTION

COAL LIOUEFACTION YIELD

Yields wt% MAF Coal Feed
Overall

H2S 2.44

H20 8.3

NH 3 1.19

Co 0.05

C02 0.12

C1 1.61

C2 1.25

C3 1.34

C4 0.60

C5-35OF 12.40

350-45OF 5.72

450-850F. 35.87

850-1 OOOF

1000F+ 26.40

Unconverted Coal 7.21

Phenols 0.30

Ash 12.96

H2 Consumption -4.80
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6.2 Process Description/Process Flow Diagram for the Directly Affected Plant

The Fluid Coking Plant consists of two sections, viz (1) Reaction Section and 2)
Fractionation Section. The process flow diagram for the Fluid Coking Plant is shown
in Figure 6.1.

Reaction Section

The vacuum bottoms from Plant 2 is mixed with the recycle slurry from the fractionator
bottoms and introduced to the reactor (C101). There the feed is thermally cracked
into lighter liquids, gases, and solid coke. The lighter products leave the reactor
through a cyclone into a scrubber section of the reactor vessel where fine coke
particles are scrubbed from the vapor product by the recycle stream from the
fractionator. The recycle slurry stream is reintroduced to the reactor with the incoming
fresh feed.

The reaction products leave the top of the scrubber and go to product fractionation.
The coke produced in the reactor is deposited on the fluid coke particles and moves
down the reactor through a stripping zone and exits to a transfer line and is moved to
the heater vessel (C102).

Both the reactor vessel and heater vessel contain fluidized beds with coke particles
circulating between the two vessels by fluidized solids techniques. In the heater
vessel, sufficient coke is burned to supply the heat of reaction needed in the reactor to
sustain the thermal cracking process. The air for combustion is provided by an air
blower, and enters the heater at the bottom with superheated steam. The hot coke
leaves the heater and returns to the reactor through the hot coke transfer line.

The net product coke leaves the heater vessel through a quench drum (C104). The
product coke is then transported to a coke storage silo (C107) and is further
transported by conveyor to Plant 9.

The low Btu gas exits the heater through internally mounted cyclones and leaves the
top of the heater. It then flows through a steam generator (E101) and a venturi
scrubber (Y101) where the remaining small coke fines are removed. Prior to being
transported to Plant 31 for use in power eneration, the low Btu gas is treated with an
amine specific for removing hydrogen sulfide.

Fractionation Section

The reaction products from the reactor/scrubber are charged to the base of the
fractionator (C105), and are quenched by the bottoms pumparound circuit thus
condensing a portion of the heavy ends which are recycled back to the top of the
scrubber. A pumparound system is installed at the gas oil draw tray to minimize
entrainment of heavy oil into the gas oil product. The gas oil product is sent to Plant 5
for hydrotreating.

6-3



The overhead condenser condenses the heavier fraction of the vapors that pass out of
the top of the fractionator. Some of this condensate is returned to the top of the
tower as reflux, and the remainder is unstabilized naphtha which is sent to Plant 4 for
hydrotreating.

The coker gas from the overhead drum is compressed, treated with an amine specific
for removing hydrogen sulfide, and sent directly to the fuel gas system. Amine
regeneration facilities are located on the coker site.
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.6.3 Material Balance for the Dir ctly Affected Plant

The overall material balance for the Coker plant (Plant 8-02) is shown in Table 6.2. In
addition, the overall material balance for this liquefaction plant, Plant 2 is shown in
Figure 6.2.

6-6



* TABLE 6.2
OVERALL MATERIAL BALANCE FOR FLUID COKER (PLANT 8-02)

3 PLANT INPUT

Stream No 8.1 82 83 84 as
FEED FR SUP HT LEAN MAKEUP RXN TOTAL

PLT 2 AIR STEAM AMINE WATER DELTA INPUT
COMPONENTS U/hr U/hr U/hr U/hr U/hr U/hr U/hr
02 0 3071 0 0 0 -3071 0
N2 0 10107 0 0 0 -203 9904

H20 0 0 0 0 6881 6881
H420 0 0 42000 2692 14430 2429 61551
112S 0 0 0 13 0 617 630
NH13 0 0 0 0 0 527 527
CO 0 0 0 0 0 60e 608
002 0 0 0 a 0 298 2977

C, 0 0 0 0 0 10816 10816
C2 0 0 0 0 0 3543 3543
C3 0 0 0 0 0 1772 1772
C4 0 0 0 0 0 271 271

C,5-350 0 0 0 0 0 3193 3193
350-450 0 0 0 0 0 2890 2890
450-850 5299 0 0 0 0 12251 17550
850-1000 0 0 0 0 0 14156 14158

1000. 333080 0 0 0 0 -218500 114580
PHENOLS 0 0 0 0 0 0 0

IMA0 0 0 163w 0 0 1632

UNCONVERTED COAL 90906 0 .0 0 0 -90986 0

COKE 0 0 0 0 0 413519 413518

TOTAL 582855 13178 42000 4345 14430 0 668808

PLANT OUTPUT

Stream No. 86 8.7 88 89 810 8.11 S.12 813
LOW BTU FUEL RICH SOUR TOTAL

GAS GAS NAPHTHA GAS OIL 850-1000 COKE AMINE WATER OUTPUT
COMPONENTS U/hr 9/hr U/hr U/hr U/hr U/hr U/hr U/hr U/hr

02 0 0 0 0 0 0 0 0 0
N42 9904 0 0 0 0 0 0 0 9904
142 1170 5521 0 0 0 0 0 0 6M91
H420 1108 85 0 0 0 0 2616 57742 61551
142S 0 0 0 0 0 0 519 Ill 630
NH13 0 119 0 0 0 0 0 408 527
CO, 5w 611 0 0 0 0 0 0 606
002 2356 0 0 0 0 0 621 0 2977
CI 438 10378 0 0 0 0 0 0 10816

-- -- 2 - ---- 0---3543 0 - 0 - 0 0 0 0- o 354
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6.4 Utility Summary for the Directly Affect d Plant.

The utility requirement for the directly affected plant (Plant 8-02) is shown in Table 6.3.

TABLE 6.3

Steam UTILITY REQUIREMENT 
FOR PLANT 8-02

600 psig superheated, lbs/hr -4,265
150 psig saturated, lbs/hr 31,524

Cooling water, gpm 978
Electricity, KW 7,056
Fuel Gas, MMBtu/hr -624

6.5 Overall Impact

As mentioned earlier, in this option a FLUID COKER unit is introduced to process
vacuum bottoms replacing the critical solvent extraction unit (Kerr McGee's ROSE-SR)
used for base line designs. The overall impact on the entire complex due to such a
change has been quantified based on the throughput adjustments to all the indirectly
affected plants. Such effects are included in this report as: 1) Overall plant
configuration and overall material balance (subsection 6.5.1), overall utility summary
(subsection 6.5.2), overall water flow distribution (subsection 6.5.3) and overall
hydrogen flow distribution (subsection 6.5.4).

6.5.1 Overall Plant Configuration and Overall Material Balance

The overall plant configuration and overall material balance for this option are shown in
the same figure, Figure 6.3.

6.5.2 Overall Utility Summary

TKEFovemallutility summary r this option is shown in Table 6.4.

6.5.3 Overall Water Flow Distribution

The overall water flow distribution for this entire complex is shown in Figure 6.4.

6.5.4 Overall Hydrogen Flow Distribution

The overall hydrogen flow distribution for the entire complex is shown in Figure 6.5.
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OPTION 6



7. Option 6 (St am Reforming of Natural Gas Plus FBC Unit for Hydrogen
Production)

7.1 Design Basis, Criteria and Considerations

In this option, as discussed earlier, the hydrogen production method is changed from
coal gasification (Plant 9) to steam methane reforming (Plant 9-01).

The following assumptions/design basis were utilized to develop this option:

Ash concentrate from Plant 8 (Kerr McGee's ROSE-SR plant) is sent to Fluidized Bed
Combustion (FBC) plant to generate high pressure steam.

Reformer produces 99.9% pure hydrogen for the complex. A total of three 150
MMSCFD hydrogen trains are required.

Fluid Bed Combustor (FBC) and Steam Turbine Generator (STG) is designed so that
50% of the ash concentrate from Plant 8 is sent to a single FBC/STG. Therefore,
there are two trains FBC/STG system with one additional spare train for plant reliability
purpose.

The directly affected plant is, of course, Plant 9 and there is addition of FBC plant (in
Plant 31.4-01) for the ROSE-SR bottoms. Indirectly affected plants are Plant 1 (Coal
Cleaning and Handling Plant), Plant 11 (By-Product Sulfur Recovery Plant), Plant 31
(Steam and power Generation Plant), Plant 34 (Sewage and Effluent Water Treatment
Plant), Plant 38 (Ammonia Recovery Plant), and Plant 39 (Phenol Recovery Plant).

The reformer was developed as a licensed process with limited information supplied by
KTI.

7.2 Process Description/Process Flow Diagram for the Directly Affected Plant
(Plant 9-01)

Reformer

Naturalgps at_50_psigAnd jQQ7Fis compressed in the natural gas feed compressors
to 350 psig. The high pressure gas is combined with 350 psig steam produced with
the unit or 600 psig steam, which has been let down to 350 psig, and reformed in a
reformer furnace.

The waste heat in the flue gases from the reforming furnace is recovered in a series of
heat exchangers, with the flue gases exiting through a stack at about 2500F.
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Part of the heat in the reformer product is recovered as 600 psig steam in the waste
heat boiler. The reformer product gas is further cooled in the product cooler and
combined with steam before entering the shift reactors to provide sufficient steam for
shift reaction to occur. The gas and steam mixture pass through beds of high and low
temperature shift reactors in series to convert carbon monoxide to carbon dioxide and
hydrogen.

The product from the shift converters is further cooled and sent to Pressure Swing
Absorption (PSA) for hydrogen purification. The PSA plants separate the hydrogen
from carbon dioxide and other unconverted gas, which are used as fuel. This plant is
capable of producing a 99.9% purity hydrogen. The process flow sketch for the
Reformer is shown in Figure 7.1.

Fluidized Bed Combustor

As shown in the process flow sketch (Figure 7.2), the fluidized bed combustor boiler
feed system conveys ash concentrate from live storage to the boiler feed silos. From
these silos the ash concentrate is fed to the fluidized bed combustors.

The fluidized bed combustors are designed to burn 4,400 tons/day of ash concentrate
from ROSE-SR plant and to produce steam for power generation. Three identical
circulating fluidized bed boilers are provided to supply steam to the turbines. Each
boiler is a drum and reheat type, with a balanced draft furnace.

A limestone preparation system is provided to dry and prepare limestone to proper
size as required by the boiler manufacturer. Prepared limestone is conveyed
pneumatically and fed to the combustor boiler furnace. The limestone injection is used
to control sulfur dioxide emissions. The bottom ash is removed from the bottom of
the combustor and sent to a silo for truck unloading.

Flue gas exiting from the boilers flows to the cyclones where large size solid particles
are removed and recycled back to the furnace. The flue gas from the cyclones flows
through the air heater where the primary and secondary air are preheated before
flowing to the furnace. The gas leaves the air heater and enters a baghouse. The
baghouse is provided for controlling particulate emissions from the boiler.

The flue gas leaves the baghouse and is directed by an induced draft fan to the stack.
Fly ash is collected and withdrawn from the baghouse and is sent to a fly ash silo for
truck loading.

7-2



0
LL

C\j cc0 wcc 2CL lz

CL 
0
LL
w

w
co

U.

a: 0
tz Ui 

2
CC
wCl) >
z
0 w

Mm
cr- co) -itL- Ui <LU
cr (.)

Cf) w 0> wz z
0

5U a:
C% 0

a: wW
a: z
0
Wcc

co
0

D w
co D

H U- CD
z 0

7-3



LU

w
N

IL
C4

65 F r%. LL
LU w

0
U.

CV)
CC
0 z

CL

CC
U. 0

U5. Cc* CIO-Ul
R L)

1- 02
R w 0

Lb

CE

LL
LL

C5

7-4



Steam Turbine Generator

The description of steam turbine generator is shown schematically in Figure 7.3. As
shown in this figure, high pressure steam from the fluidized bed combustor (2620
psig) is sent to the high pressure (HP) turbine. The turbine exhaust passes through a
desuperheater before entering the intermediate pressure (IP) turbine. High pressure
steam let down to 600 psig also passes through a desuperheater before entering the
IP turbine. The exhaust from the IP turbine is split and sent to two low pressure (LP)
turbines operating in parallel. Each of the LP turbines has a surface condenser on its
exhaust. The condenser operates under vacuum (1.0 psia). The condensate is
recovered and returned to the deaerators at the boiler feedwater treating area.
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7.3 Material Balanc f r the Directly Affected Plant

The overall material balance for the Steam Methane Reformer (Plant 9-01) and Fluid
Bed Combustion unit (Plant 31.9) are shown in Table 7.1 and 7.2, respectively. In
addition, the overall material balance for the liquefaction plant, Plant 2 is shown in
Figure 7.4.
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'TABLE 7.1

OVERALL MATERIAL BALANCE FOR PLANT 9-01

PLANT 9-01

PLANTINPUT

StreAm No. 9.1 9.2
NATURAL TOTAL

GAS STEAM INPUT

COMPONENTS #/hr #/hr 0/hr

H2 
0

H20 864428 864428

co 
0

C02 
0

Cl 307352 307352

TOTAL 307352 864428 1171780

PLANT OUTPUT

Stream No. 9.3 9.4 9.5
SOUR TOTAL

HYDROGEN OFFGAS WATER OUTPUT

COMPONENTS #Ihr #/hr #/hr #/hr

H2 91985 11670 103655

H20 30640 378260 408900

CO, 23751 23751

C02 539095 538095

Cl 97379 97379

TOTAL 91985 701535 378260 1171790
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TABLE 7.2

OVERALL MATERIAL BALANCE FOR PLANT 31.1 & 31.4

PLANTINPUT

ASH TOTAL

CONc LIMESTONE AIR INPUT

COMPONENTS #/hr Whr #/hr f/hr

N2 2902203 2902203

02 $75967 875967

H20 
0

CO'2 
0

850-1000 8330 8330

1000+ 105855 105855

CaC03 40000 40000

CaSO4 
0

UC COAL 90965 90965

ASH 163510 163510

TOTAL 368660 40000 3778170 4186830

PLANT OUTPUT

TOTAL TOTAL

FLUE GAS SOLID OUTPUT

COMPONENTS #/hr #/hr #/hr

N2 2906074 2906074

02 299927 299927

H20 96529 96528

C02 667974 1930 669904

850-1000 
0

1000+ 
0

CaC03 
0

CaS04 50897 50897

-UCCOAL----- 
0

ASH 163500 WSW

TOTAL 3970503 216327 4186830
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7.4 Utility Summary for the Directly Affected Plant.

The utility requirement for the directly affected plant (Plant 9-01) is shown in Table 7.3.

TABLE 7.3

Utility Requirement for Plant 9-01

Steam, 600 psig saturated, lbs/hr -1,132,146

Cooling water, gpm 9,435
Electricity, KW 6,133
Fuel Gas, MMBtu/hr 1,542

7.5 Overall Impact

The overall impact on the entire complex due to the change in hydrogen production
method from coal gasification, Plant 9 (in the base case design) to steam methane
reforming (Plant 9-01) has been quantified based on the throughput adjustments to all
the indirectly affected plants. Such effects are included in this report as: 1) Overall
plant configuration and overall material balance (subsection 7.5.1), overall utility
summary (subsection 7.5.2), overall water flow distribution (subsection 7.5.3) and
overall hydrogen flow distribution (subsection 7.5.4).

7.5.1 Overall Plant Configuration and Overall Material Balance

The overall plant configuration and overall material balance for this option are shown in
the same figure, Figure 7.5.

7.5.2 Overall Utility Summary

The overall utility summary for this option in shown in Table 7.4.

7.5.3 Overall Water Flow Distribution

The overall water flow distribution for the entire complex is shown in Figure 7.6.

7.5.4 Overall Hydrogen Flow Distribution

The overall hydrogen flow distribution for the entire complex is shown in Figure 7.7.
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8. OPTION 7 (NAPHTHA REFORMING)

8.1 Design Basis, Criteria and Considerations

This option is incorporated in the study as an extension of the scope of the current
study which was duly approved by DOE/PETC via a recent contract change.

In this option, the Continuous Catalyst Regeneration (CCR) Platforming process
licensed by UOP Process Division is used. The Naphtha Reformer, Plant 7, is added
downstream of Naphtha Hydrotreater (Plant 4 of Base Case) to produce a 95 RON
clear reformate product.

This option was developed based on the Bechtel's in-house data generated during
Bechtel's study in 1986 for Amoco Corporation, "Amoco Coal Liquefaction Study". In
addition, the published information by Chevron Research Company, Richmond,
California, (reference: "Aromatics Production from Coal Syncrudes", R.C. Robinson,
H.A. Frumkin and R.F. Sullivan, Energy Progress, Vol 3, No. 3, 1983) and the
proprietary UOP information utilized in a previous study by Bechtel in 1981
(Breckinridge Study) were also utilized to develop this option.

in developing this option, the following assumptions were made:

Hydrotreated naphtha from Base Case is acceptable as reformer
feedstock.

Hydrogen Production rate was prorated from Amoco Study due to the
target of 95 RON and the composition of the net hydrogen stream from
the separator section of the reformer plant (Plant 7) were assumed same
as that in the Breckinridge study.

Cl-C4 make was calculated based on Chevron results on Illinois H-Coal
hydrotreated naphtha as presented in the above referenced Chevron
study.

The directly affected plant is the new plant : Naphtha Reformer, Plant 7. The indirectly
affected plants are Plants 1, 3, 6, 9, 10, 11, 31, 32, 38, 39.

8.2 Process Description/Process Flow Diagram for the Directly Affected Plant
(Plant 7)

The catalytic reforming used for processing hydrotreated naphtha is the UOP
continuous platforming process as shown in Figure 8.1. The regenerating section of
the UOP continuous platforming process is presented in Figure 8.2.
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Feed to the platformer is combined with recycle hydrogen, raised to the reaction
temperature by heat exchange and a fired heater and charged to the reaction section.
Temperature is maintained across the reaction section by interheaters. Effluent from
the reactors is cooled by heat exchange and subsequent air and/or water cooling and
is charged to the separation section. Separator gas is recycled to the reactors with the
net hydrogen made sent to Hydrogen Purification Plant, Plant 6. Separator liquid is
directed to the stabilization section. The overhead vapor from Stabilizer is sent to Gas
Plant, Plant 3. The reformate from Stabilizer bottoms is cooled down before being sent
to storage.
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FIGURE 8.2

UOP CONTINUOUS PLATFORMING PROCESS
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8.3 Material Balanc for th Directly Affect d Plant

The material balance for Naphtha Reformer (Plant 7) is shown in Figure 8.3. In
addition, the overall material balance for the Coal Liquefaction Plant per train (Plant 2),
the heart of the complex, is shown in Figure 8.4.
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8.4 Utility Summary for the Dir ctly Affected Plant

The utility requirement for the directly affected plant (Plant 7) is shown in Table 8.1.

TABLE 8.1

Utility Summary for Plant 7

Steam, 600 psig superheated, lbs/hr -70,600

Cooling water, gpm 462
Electricity, KW 508
Fuel Gas, MMBtu/hr 318
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8.5 Ov rail Impact

The overall impact on the entire complex due to the inclusion of Naphtha Reformer
(Plant 7) has been quantified based on the throughput adjustments to all the indirectly
affected plants. Such effects are included in this report in terms of overall plant
configuration and overall material balance (Sub-section 8.5.1), overall utility summary
(Sub-section 8.5.2), overall water flow distribution (Sub-section 8.5.3) and overall
hydrogen flow distribution (Sub-section 8.5.4).

8.5.1 Overall Plant Configuration and Overall Material Balance

The overall plant configuration and overall material balance for this option are shown in
the same figure, Figure 8.5.

8.5.2 Overall Utility Summary

The overall utility summary for this option is shown in Table 8.2. Overall steam
balance for Plant 31 (Steam and Power Generation Plant) is shown in Table 8.3.

8.5.3 Overall Water Flow Distribution

The overall water flow distribution for the entire complex is shown in Figure 8.6.

8.5.4 Overall Hydrogen Flow Distribution

The overall hydrogen flow distribution for the entire complex is shown in Figure 8.7.
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TABLE 8.3 OVERALL STEAM BALANCE FOR PLANT 31

STEAM AND POWER GENERATION PLANT
NAPHTHA REFORMING OPTION

T _. i _'W , ...............EX

(SUI .... .. ... ...

Steam & Power 31 480,296 0 0 480,296
Naphtha Reformer 7 70600 70,600
Coal Liquefaction(l) 2 0 5,565 0 0
All Turbine Drives ALL 0 73,000 73,000 0

Sub Total 550,896 78,565 73,000 550,896
L tdown 600(supy6oo (3) 472,331

600 PSIG 04890F (sat
Coal Liquefaction 2 149,090 0 0 149,090
Gas Plant 3 0 421.795 421,795 0
Naphtha Hydrotreater 4 0 26,622 26,622 0
Gas Oil Hydrotreater 5 0 65,048 65,048 0
Hydrogen Production 9 269,769 0 0 269,769
Sulfur Recovery 11 0 58,187 58,187 0
Phosam-W Ammonia Removal 38 0 319,538 319,538 0

Sub Total 418.859 891,190 891,190 418,859
150 SIG @D3660F(sat)

Letdown 600/1 So
Coal Liquefaction (1) 2 275,625 185,530 0 275,625
Gas Oil Hydrotreater(l) 5 38,864 5,000 0 38,864
Rose SR (1) a 0 25,419 0 0
Hydrogen Production 9 751,526 46,225 46,225 751,526
Sulfur Recovery 11 181,038 0 0 181,038
Tanks warmup 20 0 22,000 22,000 0
PhOSam-W Ammonia Removal 38 0 569,657 569,657 0
Phenol Removal 39 0 22,757 22,757 0
Stm Tracing ALL 0 40,000 40,000 0

Sub Total 1,247,053 916,688 700.639 1,247,063
Surplus Stm to pIt 31 31 330,465

50 PSIG. 2980VI-sat)
L tdown 1,50/50
Coal Liquefaction(l) 2 0 56,115 0 0
Gas Plant 3 0 18,277 18,277 0
Hydrogen Purification(l) 6 0 63,767 63,767 0
Hydrogen Production 9 826,781 104,469 104,469 826,781
Sulfur Recovery 11 62,946 115,807 115,807 62,946
Tanks warmup 20 0 3,300 3,300 0
Waste Water Treatment 34 0 3,000 3,000 0
Phenol Removal 39 0 61,677 61,677 -0
Sterf Trading ALL -0 80,000 801000 0
Utility Stations (1) ALL 0 10,000 0 0

Sub Total 889,727 516,412 450,297 889,727
Surplus Stm to pIt 31 31 373,315

Grand Total 3,106,535 2,402,755 2,11S.126 3,106,535
Make-up Water(BFW), LBS/HR (2) 442,956
Make-up Water(BFW), GPM (2) (Estimated 592 gpm) 886
Boiler Blowdown 5% (Estimated 309 gpm) 311
Fotal Surplus Stm to plt 31 703,78L
NOTES:
(1) Used by strippers, vac stm ejectors and/or fire heaters Le steam lost.
(2) Consists of Condensate Make-up and Blowdown.
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TABLE 8.3 CONTINUED OVERALL STEAM BALANCE
PLANT 31

91 7:A AND POWER GENERATION PLANT
NAPHTHA REFORMING OPTION

DESCRIPTION -IMPORTED EXPORTED
Ibs/hr GPM lbsthr. GPM

CONDENSATE
600 Psig(sup. Heated) 73,000 146
600 Psig 891,190 1,781 418,859 837
150 Psig 700,639 1,400 1,247,053 2,492
50 Psig 450,297 900 889,727 1,778

SUB TOTAL CONDENSATE 2,115,126 4,227 2,555,639 5,107

COND. MAKEUP WATER (Dernij 287,629 575

STEAM
600 Psig (sup. Heated) 550,896 1,101
ISO PSIG STEAM (surplus) 330,465 660
50 PSIG STEAM (surplus) 373,315 746

SUBTOTALSTEAM 703,780 1,406 550,896 1,101

TOTAL (Balance) 3,106,535 6,208 3,106,535 6,208
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