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• Develop a novel, CO2

capture solvent with:

• 90% Carbon capture 
efficiency

• 25% Increase in 
capacity vs MEA

• Less than 35% 
increase in Cost of 
Energy Services

Program Objectives 

Program Objective: Develop novel solvent and process for post-
combustion capture of CO2 from coal-fired power plants with 90% 
Capture efficiency, and less than 35% increase in cost of electricity 

capture 
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• Background on the proposed technology and its   

scientific/technical merit 

• Project objective 

• Technical approach/project scope 

• Project budget 

• Project schedule and associated milestones 

• Decision points and success criteria 

• Project team/project organization 

• Project risks and mitigation strategies 

Contents 
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Background 
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Chemistry of GAP-0 reaction with CO2 

• Extensive screening of multiple solvents 

• Absorbs CO2 very rapidly in the 40-50oC range 

• High CO2 loading (>17% weight gain, >95% of theoretical value) 

• Carbamate readily decarboxylates at higher temps 
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GAP-0 carbamate salt 

• Carbamate is solid which opened up phase-change option 
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Physical Properties 
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Thermal Properties 

Heat of reaction 

• Wide range of Hrxn 

• Cp ~½ that of MEA(aq) 

• >11% Dynamic range @ 6 bara 

                  Desorption Isotherm 
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Effect of Water on Carbamate Salt 

 

 

 

 

 

Impact of dry vs wet CO2  

Solvent Dry % Wt Gain  
(% of Theoretical) 

Wet % Wt Gain  
(% of Theoretical) 

Dry Salt Form Wet Salt Form 

GAP-0  

 

GAP-1 

 

M’D’M’ 

 

M’3T’ 

 

Si Si
O

Me

Me Me

Me

NH2 NH2

17.3 (98)              Powder                     18.4 (104)         Chunky Solid 

13.1 (96)              Powder                     14.1 (103)         Sticky Wax 

17.8 (99)              Powder                     16.6 (92)           Glass 

18.8 (103)            Powder                     17.4 (96)           Sticky Gum 

17.3 (92)              Powder                     20.7 (109)         Powder 

• Pure compounds GAP-0 & cyclic diamine looked best 

• Oligomer-based salts softened with H2O & became sticky 
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Thermal Stability 

BHT TEMPO 

Galvinoxyl 

• Good stability of GAP-0 

• Improvement w/ stabilizers 
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3 Low 

Pressure

High

Pressure

1  Make the solid 

     (Solvent development) 

 

2  Collect the solid 

     (Solid isolation) 

 

3  Move the solid 

     (Solids transport) 

 

4  Regenerate the solvent 

     (CO2 desorption and recycle) 

Liquid to solid transformation on reaction with CO2 

Generic Phase Change Process 
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• Spray reactor with co-current  CO2
 flow 

• Nearly instantaneous solid formation 

• 50-400 g sample size 

• Mean particles < 50mm 

• Highly crystalline 

GE GRC Spray Reactor 

Solid Formation and Isolation 
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Options for Solid Transport 

• Contingent upon physical characteristics of solid 

• Density, shape , cohesiveness, moisture content, thermal stability 

• Integration between absorber and desorber  

• Low pressure to high pressure 

• Slurry transport  

T. Westendorf 

* 

*  Trademark of General Electric Company 
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Unit Operations 

• Two spray reactors, 1 w/ MS capability 

• Slurry transfer unit with ISCO pumps 

• CSTR as high pressure desorption apparatus 

• All operations functional 

• Next step – integrated system Absorber/spray dryer 

Desorber Unit Slurry Transfer Unit 
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Improvements in Desorption 

• Not satisfied with desorption process 

• Sacrificing inherent ability of GAP-0 

• Revisit solids transport 

• Use an extruder as a transport device 

• PRISM twin screw extruder 
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Further Improvements 

• Take process one step further 

• Use extruder to desorb CO2 from carbamate 

• Combine 2 unit operations 

• Save space and money 

• Look at effect of rpm and feed rate on performance 
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Continuous System 

Incorporate: 

• New absorber 

• Prism extruder 

• High pressure desorber 

• Pumps 

• Regulators 
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Phase-Change Continuous System 

Absorber 

Extruder 

Gas control 

Parr Reactor 

Rotary Valve 
control 

• System operational 

• Larger absorption unit 

• FT-IR/MS/CO2 analyzer installed 

• 2 months of data gathering 
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FT-IR for real time monitoring 

• Effective tool for in-situ monitoring of carbamate formation  

• Real time measurement 

• Change in intensity of signals related to carbamate concentration 

• Develop predictive extruder model 

Increasing pressure 
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Modeling (Process) 

y = 0.9709x + 2.4201

R² = 0.9709
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% CO2 Remaining 
in carbamate

%GAP-0 = 106.92 - 4.92 * P PARR 

%GAP-0 = 81.31 - 7.2191 * P PARR

%GAP-0 = 106.51 - 7.3827 * P PARR 

140C Extruder data

150C Extruder data

160C Extruder data

%GAP-0 = C0 + C1*PARR Pressure +  
C2*(Feed rate / screw speed) + C3*Temperature 

• Good agreement 

• Good predictability 
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Modeling (ASPEN) 

X =  

• Residence time of the solvent in the extruder = f (rpm, feed rate, 

screw geometry) 

• Temperature in the extruder = f (heat supplied, viscous 

generation, HT coefficient) 

• Inlet CO2 loading 

• Pressure at outlet 

• Reaction Rate 

Extruder / 
Desorber

x Y = f (x) [Outlet CO2 loading] 
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Phase-Change Energy Penalty Waterfall 

• Large savings with reduced water 

• 24- 32% reduction in energy consumption 
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End of ARPA-e Program 
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Project Objective 

The objective of this project is the construction and operation of a phase-

changing solvent-based, continuous, bench-scale CO2 capture system.   

In the first phase of the project, initial process and cost models will be 

developed and the individual unit operations will be designed and built.  
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Project Objective
The objective of this project is the construction and operation of a phase-

changing solvent-based, continuous, bench-scale CO2 capture system.   

In the first phase of the project, initial process and cost models will be 

developed and the individual unit operations will be designed and built. 

In the second phase, testing will be performed on the individual unit 

operations to evaluate their performance. These data will be used to 

update the process and cost models. At the end of this phase the 

integrated system will be assembled.  



25  
R. Perry 

11/20/2013 

Project Objective
The objective of this project is the construction and operation of a phase-

changing solvent-based, continuous, bench-scale CO2 capture system.   

In the first phase of the project, initial process and cost models will be 

developed and the individual unit operations will be designed and built. 

In the second phase, testing will be performed on the individual unit 

operations to evaluate their performance. These data will be used to 

update the process and cost models. At the end of this phase the 

integrated system will be assembled.  

In the third phase, the integrated system will be operated under steady-

state conditions, and the results will be used to update the models. The 

ultimate goal of the project is to establish scalability and technical and 
economic feasibility of using a phase-changing CO2 capture absorbent for 

post-combustion capture of CO2 from coal-fired power plants with 90% 

capture efficiency and 95% CO2 purity, at a cost of $40/tonne of CO2 

captured by 2025, and a cost of <$40/tonne of CO2 captured by 2035. 
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Technical Approach/ Project Scope
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Technical Approach

• Take learnings from ARPA-e program and apply to bench-scale system

• Design, construct and operate continuous system

• Gather economic and technical data for route to commercialization
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Phase 1

• Design and construction of bench-scale unit

• Spray reactor

• efficient aerosol formation and contact with simulated flue gas

• low fouling nozzle

• disengagement of particles from gas stream

• operation at 200 mL/min solvent flow rate

• 120 slm gas flow rate

• solids transfer device (rotary valve)

• work closely with NIRO for design input

• Extruder

• system to handle 20-150 lb/hr solid

• maintain hydrostatic seal

• design elements to maximize throughput

and heat transfer

• partner with Coperion for extruder strategy
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Phase 1

• Design and construction of bench-scale unit

• Desorber

• 2 vessels in series

• elevated pressure to maintain backpressure in extruder

• atmospheric vessel for polishing

• deliver sufficient heat to drive complete desorption

• Integrated system

• work closely with facilities to install services/utilities

• process controls/instrumentation specified and installed

• design for 200 – 1700 mL/min liquid flow rate

• automated controls where possible

• data logging capability

• Preliminary Technical & Economic Assessment

• Leverage model developed in ARPA-e program

• Generate estimate of cost of CO2 capture

GO / NO GO decision (90% capture; <$50/tonne)
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Phase 2

• Testing & Operation of Unit Ops

• Absorber

• quality/quantity of solids production

• nozzle atomization efficiency

• range of operable liquid and gas flow rates

• heat management

• Extruder

• solids feed rate

• barrel temperature profile

• range of operable pressures

• degree of CO2 desorption

• operating parameters
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Phase 2

• Testing & Operation of Unit Ops

• Desorber

• temperature

• mixing rate

• pressure

• extent of CO2 desorption

• Other

• evaluation of materials of construction

• manufacturability of aminosilicone solvent

• cost / quality / availability

• assemble continuous system

• technology EH&S risk assessment

• update process model

GO / NO GO decision (90% capture; <$45/tonne)
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Phase 3

• Operation of Integrated System

• Generate engineering data needed for final techno-economic assessment

• Steady-state operation

• Process optimization

• Effect of flue gas contaminants

• Solvent regeneration energy

• State point data table

• Develop scale-up strategy

• concept for scalable extruder optimized for process

• move towards commercialization

• Economic and Scale-up analysis

• CO2 separation module

• Plant model
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Project Budget

Budget Period Gov’t Share Cost Share 

1/1/14 - 3/31/15 $ 1,021,866 $ 255,467 

4/1/15 – 3/31/16 $ 651,639 $ 162,909 

4/1/16 – 12/31/16 $ 726,456 $ 181,614 

Total $ 2,399,961 $ 599,990 

• $3.00MM program

• Delay start until 1/1/14
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Schedule
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Project Organization
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Program Flow



37  
R. Perry 

11/20/2013 

Budget 
Period 

Task Milestone Planned 
Completion 

1 1 Updated PMP 1/31/14 

1 1 Kickoff Mtg 12/31/13 

1-3 1.2 Annual Reviews 12/31/16 

1-3 1.2 Quarterly Reports 12/31/16 

3 1.2 Final Report 12/31/16 

1 2 Go/No Go Decision 12/31/15 

1 3.1 Absorber Built/Operational 12/31/14 

1 3.2 Extruder Built/Operational 3/31/15 

1 3.3 Desorber Built/Operational 12/31/14 

2 4.2 Absorber Parameters Established 3/31/16 

2 4.2 Extruder Parameters Established 3/31/16 

2 4.2 Desorber Parameters Established 12/31/15 

2 4.5 Continuous System Assembled 3/31/16 

2 5.1 Technology EH&S risk Assessment 3/31/16 

2 5 Go/No Go Decision 3/31/16 
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Budget 
Period 

Task Milestone Planned 
Completion 

3 6 Update State Point data table 12/31/16 

3 6 Demonstrate continuous steady state 
operation 

12/31/16 

3 6 Material and energy balance for 
continuous bench-scale system 

12/31/16 

3 7.1 Scale-up strategy 12/31/16 

3 7.2 Techno-economic assessment 12/31/16 
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Risk Analysis 

Technical Risk Probability Impact Mitigation 

Unable to heat extruder evenly 
w/ recovered heat 

High High Modify screw/barrel heating 
elements; temp profile 

Incomplete decarboxylation in 
extruder 

High Moderate Optimize extruder parameters 

Bulk density of carbamate is 
too low 

High Moderate Compress/compact powder 

Unmanageable temp rise in 
absorber 

Moderate High Modify absorber design 

Extruder throughput is too low High Moderate Larger/multiple extruders 

Inadequate supply of Gap-0 Moderate High Confirm multiple sources 

Beta-isomer causes solids 
issues 

Moderate High Define specs for beta content 

Fouling of nozzle High Moderate Incorporate mechanism to detect 
and resolve fouling 

Corrosion of process 
equipment 

Moderate High 
 

Characterize corrosivity of solvent 
in process equipment; choose 

appropriate materials of 
construction 
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Technical Risk Probability Impact Mitigation 

Capacity of absorber does not 
match desorber capacity 

High Moderate Modify process to accommodate 
unmatched feed rates 

Not enough residence time in 
extruder 

Moderate Moderate Add more barrels; lower feed rate; 
reduce screw speed 

Water presence causes sticky 
particles 

Moderate Moderate Decrease water level in exhaust 
gas; decrease water level in 

GAP-0; reduce water spray for 
evaporative cooling 

Loss of small particles in 
absorber unit 

Moderate Moderate Optimize cyclone or bag filter 
design 

Cost of Solvent is too high Moderate Moderate New manufacture process 

Bridging prevents smooth flow 
of carbamate from absorber 

and/or into extruder 

Moderate Moderate Design vibratory hoppers or 
agitators 

Poor solid formation in 
absorber  

Low High Determine root cause (droplet 
size, liquid spray pattern, 
CO2:GAP-0 stoichiometry) 
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Technical Risk Probability Impact Mitigation 

Unable to form hydrostatic seal 
in extruder  

Low High Redesign extruder screws; 
optimize extruder parameters 
(screw speed, solids feed rate, 

temperature profile) 

Solidification of extrudate in 
lines  

Low High Heat tracing of lines downstream 
of extruder 

Not able to have real-time 
measurement  

Low High Incorporate in-line FT-IR, MS, or 
CO2 monitor 

SO2 causes particle change Low Moderate Remove SO2 prior to contact with 
GAP-0 

Thermal degradation of solvent 
is excessive  

Low Moderate Formulate thermal stability 
additive package 
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