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Recuperated CO, Oxy-Fuel Cycle

e Cycle analysis setup

e Validation with existing Mercury 50 recuperated
air Brayton cycle

e Analysis of recuperated CO2 Oxy-fuel cycle
e Analysis results

e Heat Exchanger design conditions




Recuperated CO, Oxy-Fuel Cycle
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Recuperated CO, Oxy-Fuel Cycle

Modeling Parameters

Compressor Isentropic Efficiency 80.0%
Turbine Isentropic Efficiency 83.3%
Heat Exchanger Effectiveness 93.0%

Cycle Analysis Results

Cycle Efficiency
Recuperated Air Brayton Cycle 40.0%
Oxy-Fuel Recuperated CO: Brayton Cycle 47.7%

Cycle efficiency is expected to over 50% when combined
with a bottoming ORC cycle.
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Recuperated CO, Oxy-Fuel Cycle

e Cycle advantages

— Over 50% thermodynamic efficiency when paired
with a bottoming ORC cycle

— Oxy-fuel cycle provides sequestration-ready CO2
stream (needs compression)

— 70% volume flow compared with air cycle at
equivalent power => reduced size of
turbomachinery and heat exchangers
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Primary Surface Heat Exchanger
Technology

Developed in early 1970s for
vehicle engine recuperators

Established technology is widely
used in Mercury 50 gas turbine and R R
multiple microturbines Songs Y o

Core composed of cells constructed
from 2-8 mil Inconel 625 gouger |
corrugated sheets

Clamped design allows assembly to
flex, reducing thermal stresses

Sheet contacts provide damping.




Primary Surface Heat Exchanger
Technology

e High effectiveness (92-93%)

e Compactsize

e Limited to low-DP cycles (currently 9 bar)

e Current design operates up to 1200°F (650°C)
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SHELL AND TUBE PLATE FIN PRIMARY SURFACE
23 608 kg (52,000 Ib) 22 019 kg (48,500 Ib) 3405 kg (7500 Ib)

EfT = 84% Eff = 78.8% Eff = >90%

AP =3.8% AP =3.4% AP = 6%




Recuperator Development Needs

e Several technical challenges must be overcome
for proposed cycle:

— Material with sufficient tensile and creep strength at
1510°F (821°C)

— Oxidation-resistant material/coating in high-
temperature CO2

— Oxidation data unavailable above 600-700°C.

— Mechanical stresses must be minimized by design to
avoid creep and low-cycle fatigue failures




Project Objective

e Develop a high-temperature heat exchanger
design concept for operation in CO2 at 1510°F
(821°C) and differential pressure up to 130 psi
(9 bar).

* Proposed for use in low pressure oxy-fuel
Brayton cycle, but may also be used in other
high temperature, low differential pressure
cycles.
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Project SOPO Tasks

< 1 — Project Management & Reporting
K 2 —System Analysis

< 3 — Materials and Coatings Evaluation
< 4 — Recuperator Mechanical Redesign

K 5 —Test Loop Preliminary Design




Task 2 — System Analysis

e Subtask 2.1: Thermodynamic Analysis

— Predict system performance of recuperator design using
calculated heat exchanger effectiveness

— Predict fuel consumption

e Subtask 2.2: Economic Analysis

— Predict capital and operating cost based upon material
selection and thermodynamic analysis (fuel consumption)

— ldentify cycles where cost effective to include the
recuperator

e Results will be updated for each recuperator redesign




Task 3 — Materials and Coatmgs
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Task 3 — Materials and Coatings

e Subtasks 3.2 & 3.3: High temp
bench-scale CO2 corrosion test rig o o Lines
design and operation | hgr l

e QOption 1: Custom built test rig

— Allow tuning to more closely match LRR S R ‘:
existing conditions |

— Flexibility in testing conditions, times,  samples M Mixer Source

etc.

— Custom or existing coupons for testing

— Design and build required for test rig
and samples



Task 3 — Materials and Coatings

e QOption 2: Tube furnace

— Existing equipment that is already
operational

— Basic furnace with CO, environment
capability

— Can provide a high quality CO, gas

— Limited on gas flow rates



Task 3 — Materials and Coatings

e Option 3: Simultaneous i
Thermogravimetry Differential
Scanning Calorimetry (STDSC)

— Precise in measuring capabilities

— Smaller sample sizes required

— Limited on gas flow rates, reduced
precision at higher flows




Task 4 — Recuperator Redesign

e Subtask 4.1 Develop and Validate Mechanical
Model for Existing Recuperator

— Solar to provide design information and model of
recuperator core

— SwRI to add ducting as necessary to simulate
stresses

— Simulate recuperator at air cycle conditions and
verify HX effectiveness and thermal stresses with
Solar values




Task 4 — Recuperator Redesign

e Subtask 4.2 Concept Study of Redesign Options

— New material, changing cell size, primary surface thickness,
rearrangement of clamping bars and/or weld geometry,
additional stress reduction features at high-stress areas

— Develop matrix to evaluate advantages and disadvantages,
including estimated costs.

e Subtask 4.3 Mechanical Design and Analysis of
Selected Concepts

— Finite Element Analysis, Conjugate Heat Transfer Analysis

e Subtask 4.4 Design drawings and Quotes




Task 5 — Test Loop Preliminary
Design

e Design layout and
components for test loopfor &
future full-scale testing of il
recuperator

— No testing in current scope
— Design necessary for costing
information for future work

e Minimize cost by utilizing
existing CO2 compression e
facility at SwRI. Potentially use | @}
existing heaters, coolers, etc. ——




Task 5 — Test Loop Preliminary
Design — 70%% Flow Concept

All major components are

existing equipment except 6 MW

burner & heater, planned for

purchase on upcoming project L bar
pending approval.

10 bar
175C

10 bar

TEO kW Electric
Heater

co2
Compressor




Project Management - Roles

Tim Allison, PhD
SwRI (PM)

Project Management

Jeffrey Bennett

N System Analysis SwRI

Klaus Brun, PhD
Jeff Moore, PhD
SwRI

———P» Materials and Coatings Evaluation

——P Recuperator Mechanical Redesign David Teraji

Tom Luckett
Solar Turbines

> Provide Recuperator Design

Conceptual and Mechanical
Design

> Design Review

1 Test Loop Preliminary Design




Project Management — 18 Month
Timeline
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Project Management — Spend Rate

Cumulative Spending

$500,000

——Govt. Funds
$450,000

—#—Cost Share
$400,000

$350,000 //
$300,000 //
$250,000 /

$200,000 /’/
$150,000

$100,000

$50,000




