Development of a Framework for Data Integration, Assimilation, and Learning for Geological Carbon Sequestration (DIAL-GCS)
Project #: DE-FE0026515

Alex Sun, Ph.D., P.E.
Bureau of Economic Geology
The University of Texas at Austin

U.S. Department of Energy
National Energy Technology Laboratory
Mastering the Subsurface Through Technology Innovation, Partnerships and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting
August 13-16, 2018
Presentation Outline

• Technical Status
 – Background and system design
 – Online anomaly detection using machine learning
 – Monitoring network optimization

• Accomplishments to Date

• Lessons Learned

• Synergy Opportunities

• Project Summary
Background & Motivation

- Internet-of-Things
- Distributed sensing

THE DATABERG
THE DARK DATA THAT LIES BENEATH

12% OF DATA IS BUSINESS CRITICAL

23% REDUNDANT, OBSOLETE AND TRIVIAL (ROT) - COST TO GLOBAL INDUSTRY: $3.3 TRILLION BY 2020

65% DARK DATA HIDDEN WITHIN NETWORKS, PEOPLE AND MACHINES

DARK DATA REASONS

- 85% No tool to capture and unlock Dark Data
- 39% Too much data, not enough analytics
- 25% Can only access Structured Data
- 66% Data is missing or incomplete
Background & Overview of Project

A multi-tier intelligent monitoring system (IMS)

<table>
<thead>
<tr>
<th>Application Tier</th>
<th>Middleware Tier</th>
<th>Data Tier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine Learning [T3]</td>
<td>Knowledge Extraction [T3]</td>
<td></td>
</tr>
<tr>
<td>Visualization [T5]</td>
<td>Event Rules [T3]</td>
<td></td>
</tr>
</tbody>
</table>

Task 2: Sensor data schema development and provisioning (Y1)
Task 3: Development of CEP, machine learning (Y1-3)
Task 4: Coupled modeling, UQ, and data assimilation (Y1-4)
Task 5: System integration and demonstration (Y1-4)
Complex Event Processing

Sensor Feeds → DB → Complex Event Processing Engine

- Transform, Correlate, Aggregate, Filter
- Compound Event Streams
- Learning & Prediction

→ Notification

From raw data to structured data

Data acquisition → Data transformation → Feature extraction → Feature alignment

Feature engineering
Data-Driven Anomaly Detection

• Adopt machine learning (ML)

• Suitable for
 – Continuous monitoring
 – When physical process is not fully understood
 – Automated anomaly detection

• Requirements
 – Effective online ML algorithms
 – Labeled training data and expert insights!
 – High-performance, integrated computing infrastructure
Anomaly Detection Case Study

Cranfield, MS, experiments

Dataset include **Pressure and Temperature** measurements from
- Base experiments (no leak)
- Controlled release experiments (artificial leak)
Problem-Dependent ML

- Pressure anomaly
 - IsolationForest algorithm

- DTS anomaly, PCA algorithm

Leak Events
DIAL-GCS 1.0

Design 1.0:
- Web GIS
- Time series management
- A lot custom coding
DIAL-GCS 2.0

Design 2.0:
• Loosely coupled web-based stack
• Expandable
Web-Based Monitoring Planning

Types of metamodeling supported:
- Gaussian process regression
- Sparse grid
Data-Space Inversion (DSI)

What is DSI?

- A new paradigm for long-term prediction and UQ without using history matching
- Prior knowledge is used to generate possible scenarios, but not to calibrate model
- DSI combines physically-based model with ML

Jeong et al., 2018a, A learning-based data-driven forecast approach for predicting future reservoir performance. AWR.
Deep Learning for Surrogate Modeling

• Deep learning (DL) is a very powerful tool for pattern recognition. However it requires a large amount of labeled data for training
• In geosciences, there’s a lot of hype on DL but also many questions
• We developed an innovative DL pipeline for combining DL with physics-based models

Single phase flow example

Dimensions 128x128
Optimal Monitoring Network Design

Objective Function
- Well cost = CAPEX($/well) + OPEX($/well/day) + Intervention($/well)
- Leakage cost = Brine($/ton) + CO₂($/ton)

Optimization toolbox
- Binary Integer Programming
 - Linear problem
 - Convex
- Optimize monitoring network

Constraints
- # of monitoring wells ≤ N_max
- CO₂ leakage ≤ M% of total injected CO₂
- ΔP at t_leakage detection ≥ ΔP_threshold

Our tool maximizes NPV by considering
- High uncertainty in geologic models
- Monitoring budget
- Leakage damage cost
- Carbon credit <= 45Q Tax Incentives for CCUS

3D model site scale models

Optimization Toolbox for Pressure Monitoring Network
The optimal monitoring well locations are different because heterogeneous permeability affects:

- Spatial pressure distribution
- Leakage detection time

<table>
<thead>
<tr>
<th>Geologic model</th>
<th>c_{brine}</th>
<th>c_{CO_2}</th>
<th>c_{brine}</th>
<th>c_{CO_2}</th>
<th>c_{brine}</th>
<th>c_{CO_2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log$_{10}$ k (md)</td>
<td>$10/t$</td>
<td>$10/t$</td>
<td>$10/t$</td>
<td>$1,000/t$</td>
<td>$100/t$</td>
<td>$10/t$</td>
</tr>
<tr>
<td>Total cost</td>
<td>8.76 MM</td>
<td>9.63 MM</td>
<td>29.75 MM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimal monitoring well location</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log$_{10}$ k (md)</td>
<td>$10/t$</td>
<td>$10/t$</td>
<td>$10/t$</td>
<td>$1,000/t$</td>
<td>$100/t$</td>
<td>$10/t$</td>
</tr>
<tr>
<td>Total cost</td>
<td>9.16 MM</td>
<td>9.99 MM</td>
<td>31.37 MM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimal monitoring well location</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Black: leaky well
Green: injector
Magenta: monitoring well
Lessons Learned

- We have developed an intelligent monitoring system to help generate “intelligent information” and reduce “dark data.”

Applications include
 - Web-based monitoring planning
 - Pressure-based monitoring network design
 - Data space inversion
 - Deep learning tools

- Data-driven machine-learning models are suitable for continuous monitoring and anomaly detection and can be used together with physics-based models for surrogate modeling.

- A viable approach is to combine prior information, expert knowledge, and state-of-the-art machine learning tools for knowledge discovery and representation.
Accomplishments to Date

– Task 2: Data management
 • Year 1: Developed schema and data adaptors for storing, exchanging information, and visualizing information

– Task 3: Complex event processing using machine learning
 • Year 2: Implemented predictive models on different test datasets
 • Year 3: Updated the existing platform for usability

– Task 4: Coupled modeling / data assimilation
 • Year 2: Implemented workflow for automating data assimilation. Demonstrated Web-based modeling approaches
 • Year 3: Focused on ML and DL tool development

– Task 5: Integration and demonstration
 • Year 1-3: Experimented with a large number of web-based technologies for making the system more user friendly
Synergy Opportunities

– DIAL-GCS is an intelligent monitoring system designed for anomaly detection, monitoring network design, leakage cost estimation
– Most tools are web-based, or can be readily converted to web-based, for CCS decision support needs
Project Summary

- Developed and improved DIAL system

- All tasks are on revised schedule

- Next steps
 - Formalize data transformation and work flow
 - Improve web-based monitoring network design
 - Experiment with different data-driven models and data types
 - Provide useful web services
 - Provide deep learning based web service
Acknowledgements

• DOE/NETL PM: Bruce Brown

• University of Texas
 – Bureau of Economic Geology: Sue Hovorka, Katherine Romanak, Hoonyoung Jeong, Zhong Zhi
 – Texas Advanced Computing Center: Weijia Xu, David Walling

• LBNL: Barry Freifeld (provided DTS data)
Appendix

- These slides will not be discussed during the presentation, but are mandatory.
Benefit to the Program

• Carbon storage program goals being addressed

 Develop and validate technologies to ensure 99 percent storage permanence

• Expected benefits of this IMS Project
 – Transform scientific knowledge to decision power and public knowledge
 – Promote data sharing and visual analytics
 – Better collaboration among team members
 – Public outreach
 – Streamline CCS data management and decisionmaking
 – Facilitate the optimal allocation of monitoring resources
Project Overview
Goals and Objectives

• Develop GCS data management module for storing, querying, exchanging, and visualizing GCS data from multiple sources and in heterogeneous formats
 – Success Criterion: Whether a flexible, user-friendly Web portal is set up for enabling data exchange and visual analytics
• Incorporate a complex event processing (CEP) engine for detecting abnormal situations by seamlessly combining expert knowledge, rule-based reasoning, and machine learning
 – Success Criterion: Whether a set of decision rules are developed for identifying abnormal signals in monitoring data
• Enable uncertainty quantification and predictive analytics using a combination of coupled-process modeling, data assimilation, and reduced-order modeling
 – Success Criterion: Whether a suite of computational tools are developed for UQ and predictive analytics
• Integrate and demonstrate the system’s capabilities with both real and simulated data
 – Success Criterion: Whether the IMS tools developed under Goals A to C are integrated, streamlined, and demonstrated for a realistic GCS site
Organization Chart

Young
BEG
Associate Director

Hovorka

Sun
(PI)

Romanak
(Co-PI)

TACC

Postdoc (Hoonyoung Jeong, Zhi Zhong)

Nicot

Graduate Students
Table 2. Project Gantt chart
(Numbers in table rows indicate milestones).
(Phase I [] ; Phase II [])

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Update project management plan</td>
<td>[]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Sensor data management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Ontology/schema development</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Sensor data adaptor development</td>
<td></td>
<td></td>
<td>[]</td>
</tr>
<tr>
<td>3</td>
<td>CEP Development</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Rule definition</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>3.2</td>
<td>Reasoning and machine learning</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>3.3</td>
<td>Testing</td>
<td></td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>4</td>
<td>Coupled modeling/Assimilation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Coupled modeling</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>4.2</td>
<td>Data assimilation</td>
<td></td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>5</td>
<td>Integration and demonstration</td>
<td></td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>5.1</td>
<td>Integration</td>
<td>[]</td>
<td></td>
<td>[]</td>
</tr>
<tr>
<td>5.2</td>
<td>Demonstration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Synthesis of results</td>
<td></td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>6.1</td>
<td>Dissemination of results</td>
<td>[]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td>Technology transfer</td>
<td></td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>
Bibliography

– Peer-Review Manuscripts

– Presentations

• Development of anomaly detection models for deep subsurface monitoring, presented at the fall meeting of American Geophysical Union, New Orleans, LA, December, 2017