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Presentation Outline

• Introduction

• Approach

• Method application 

• Summary



Objectives

Monitoring for faults at a critical state of stress

Goal: ensure safe and long-term CO2 storage
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• Pre-injection characterization
– Identify faults of concern in the 

region

• During-injection monitoring
– Avoid induced seismicity

(from LBL)



Critical State of Stress

• All brittle failure experiments 
exhibit precursors

• All shear experiments exhibit 
precursors

• Many avalanches exhibit 
precursors

• Many earthquakes exhibit 
precursors (but not all!)

We posit that all slip events 
exhibit precursors but that we 
cannot always record or 
identify them. 5

Tectonic or fluid forcing



Approach

• Detect small seismic signals
– Abundant small events provide a robust path for 

testing our hypothesis
– previously unidentified, new signals
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• Analyze the relationship to 
critical state
– Response to small stress 

perturbation (e.g., triggering by 
solid Earth tide)

(Johnson & Xia, 2005)



Small Signals Reveal Fault State
• Oklahoma

– With comprehensive new catalog (include many more small 
events), tidal triggering was detected before the M5.7 Prague 
earthquake, indicating a potential critical state

7

new catalog



Methods to Detect Small Signals
• Inter-station waveform coherence

– Multiple stations
– Regional scale
– High cost

• Machine-learning based algorithms
– Accurate (reduce the detection threshold)
– Low cost (automatic, fast)
– Flexible

• Single station, single component
• Single station, multiple components
• Multiple stations, multiple components
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Machine Learning Detection

• Two-phase detection
– Classification: determine whether the given time segment 

includes an earthquake
– Regression: locate the earthquake arrival time
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Machine Learning Detection
• End-to-End

– No preprocessing

• Densely Connected 
Convolutional Neural 
Network (DenseNet)
– Less parameters, 

reduce cost 

• Multi-scale
– Detect events of 

different size
10



Application to Field Data

• Dataset 1: central Oklahoma
– Training set: ~3000

• Dataset 2: northern Oklahoma
– Small training set: ~ 500

• Dataset 3: Decatur, Illinois
– Small training set: ~ 100
– Low SNR 
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normal

challenging

highly challenging



Application – Dataset 1

• Central Oklahoma  
(water injection)

• One station in US Array 
(2010-2011)

• Broadband seismometer

• Vertical component

• Earthquake catalog: 
– 3319 events
– 1 < M < 5
– Inter-station waveform 

coherence 12



Application – Dataset 1

• Training set: 
– the first 19 months
– Event: 2651
– Noise: 2651

• Test set: 
– the rest 3 months
– Event: 668

• Accuracy: 
– 90.2%
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Training: event 

Training: noise 

Detect: extra event 



Application – Dataset 2
• Northern Oklahoma 

(water injection)

• One station in IRIS 
wavefield experiment 
(June-July, 2016)

• Geophone

• Vertical component

• Earthquake catalog
– 509 events
– Oklahoma Geological 

Survey (2<M<4)
– Manual phase pick (M<2)
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Application – Dataset 2
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• Training set: 
– the first 10 days
– Event: 382
– Noise: 1146

• Test set: 
– the rest 5 days
– Event: 127

• Accuracy: 
– 80%

Training: event 

Training: noise 

Detect: extra event 



Application – Dataset 3
• Decatur, Illinois  

(CO2 injection)
• One station from 

USGS seismic array 
(2013-)

• Borehole geophone 
(~150 m deep)

• Vertical component
• Earthquake Catalog:

– 136 (2013-2015) 
– -1.1 < M < 1.3
– Kaven et al., 2015 16

1000
mhttp://ds.iris.edu/



Application – Dataset 3
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• Training set: 
– the first 10 months
– Event: 264
– Noise: 264

• Test set: 
– the rest 3 months
– Event: 26

• Accuracy: 
– 72 %

Training: event 

Training: noise 

Example signal (Kaven et al., 2015)

M0.86 M0.23



Summary

• We have developed a machine learning algorithm to 
detect earthquakes using one-component record from 
one station

• This method can 

• differentiate earthquake signals from non-earthquake signals.

• detect earthquakes of different length in times

• estimate the first arrival times of the detected earthquakes

• We demonstrated the capability of this method by 
applying to different fluid-injection sites 18



Next steps
• Field application

– Continue the large-volume data processing at different injection 
sites to extract small earthquake signals

– Evaluate the results against other methods

– Analyze the behavior of earthquake distributions in relation to 
stress perturbation

– Economic evaluation of the monitoring approach

• Algorithm improvement
– Extend the algorithm to single station, multi-component

– Extend the algorithm to multi-station, multi-component
19



Synergy Opportunities

• Injection projects that have seismic monitoring system to 
collect passive seismic data

• Improve our event detection algorithm

• Feed back with seismic characterization and inferred fault 
state

20



Appendix
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Benefit to the Program 
• Program goals being addressed by this project

– Improve the risk assessment of induced seismicity in carbon 
sequestration.

• Project benefits
– The research project is developing new methodology to identify 

and monitor faults at a critical state of stress. If successful, the 
proof-of-concept work will demonstrate at field scale a 
transformational approach for both identifying potential faults of 
concern during site pre-characterization and monitoring a site 
during injection such that induced seismicity is minimized or even 
avoided.
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Project Overview  
Goals and Objectives

• Relationship to the program goals and objectives
– The stress state of the fault is related to risk level of induced 

seismicity. Monitoring faults at critical state of stress enables 
advanced risk assessment of induced seismicity for carbon storage.

• Success criteria 
– New methodology for monitoring the stress state of faults
– Successful application of the methodology to CO2 storage field
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Organization Chart

• LANL
– Ting Chen, Youzuo Lin, Alex Eddy, Yue Wu, Zhongping Zhang, 

Peter Roberts, Christine Gammans, Andrew Delorey, Paul. 
Johnson, Velimir Vesselinov, Daniel O'Malley, Rajesh Pawar, 
George Guthrie

• External partners (leveraging with)
– U. Alberta [Canada], Penn State, U. Tenn., USGS, ETH [Zurich], 

ENS [Paris]. U. Rochester, Georgia Tech
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Gantt Chart

Prior work—IWC analysis of  multi-station/multi-component data shows changes in small events using pre-2012 OK dataset
1. Develop/train machine-learning algorithm (ML-1) to extract events from single-component, single-station seismic data
2. Evaluate ability of  ML-1 to extract small events relative to interstation waveform coherence (IWC) using pre-2012 OK 

dataset
3. Extend ML-1 to extract events from multi-component, single-station data (ML-2); test using pre-2012 OK dataset
4. Extend ML-2 to extract events from multi-component, multi-station data (ML-3); test using pre-2012 OK dataset
5. Protocols for use and application of  ML algorithms as applied to seismic datasets at site- (ML-1; ML-2) or regional-scale 

(ML-3)
6. Apply ML protocol to OK data (2009–2016)
7. Apply ML protocol to seismic dataset(s) from other sites (a, b, c, …)
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