

Adaptive Electrical Capacitance Volume Tomography for Real Time Measurement of Solid Circulation Rate at High Temperatures

Project Investigator: Tech4Imaging LLC, 1910 Crown Park ct., Columbus OH 43235

PI: Qussai Marashdeh, <u>marashdeh@tech4imaging.com</u>

Meeting: Crosscutting Meeting 2018 Date: 04/10/2018 DOE award #: DE-SC0011936 Period of Performance: July 2017-July 2019 Subcontractors: The Ohio State University

Project Goals & Objectives

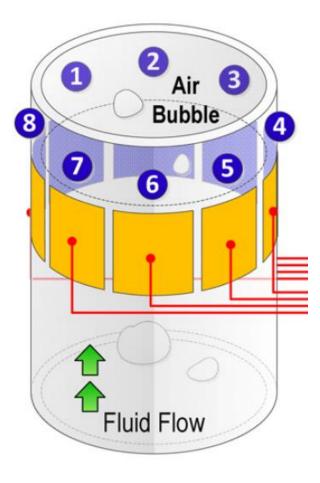
 The main technical objective of Phase II A is to continue development of a functional AECVT demonstration system for real-time imaging and measurement of multiphase flows at high temperature.

Year 1 Milestones:

- 1. 1- Fabricate AECVT sensor material and design/fabrication process- <u>end of 3rd quarter.</u>
- 2. Fabricate test chamber for gassolid applications- <u>end of 3rd</u> <u>quarter.</u>
- 3. Develop software GUI <u>end of 4th</u> <u>quarter.</u>

Year 2 Milestones:

- 1. Development of reconstruction and feature extraction algorithms- <u>end of 7th quarter.</u>
- 2. Develop and demonstrate software and GUIend of 8th quarter.
- 3. Demonstrate integrated system- <u>end of 8th</u> <u>quarter</u>.



Presentation Outline

- Introduction to ECVT & AECVT
- Algorithms
- Electronic Design & Sensor
- Schedule

TECH MAGING Electrical Capacitive Volume Tomography

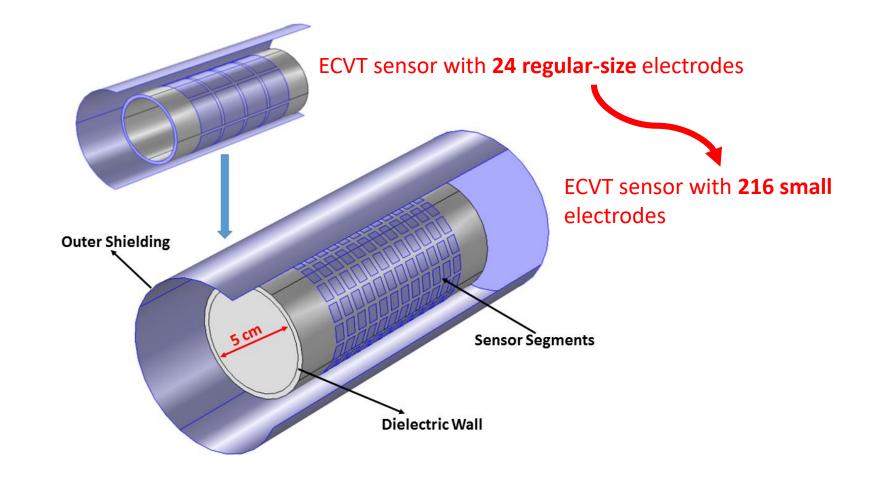
- Electrical Capacitance Volume Tomography (ECVT) is a low cost noninvasive imaging technique to find the volumetric dielectric distribution from inter-electrode capacitance measurements.
- Electrodes respond differently to the change in permittivity distribution inside the sensing domain. These mutual capacitances are used to reconstruct the dielectric distribution in the sensing domain.
- ECVT is used in nondestructive testing, imaging of multiphase flows and for imaging of combustion flames and fluidized beds.
- Adaptive ECVT (AECVT) is a high resolution sensor formation that can form many electronic synthetic plates.

ECVT Sensor Model

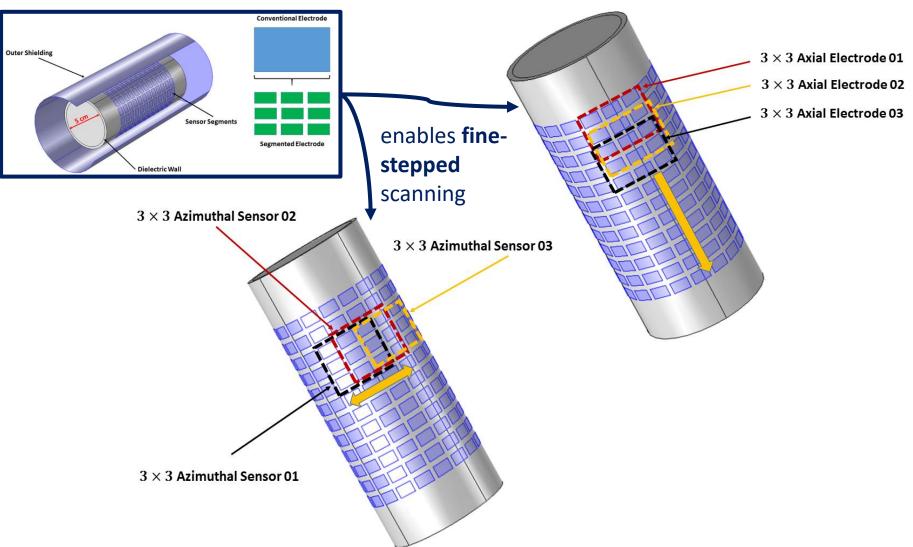
The inter electrode capacitance is computed by

$$C = -\frac{1}{V} \iint_{\Gamma} \varepsilon(x, y) \nabla \phi(x, y) \cdot n dS.$$

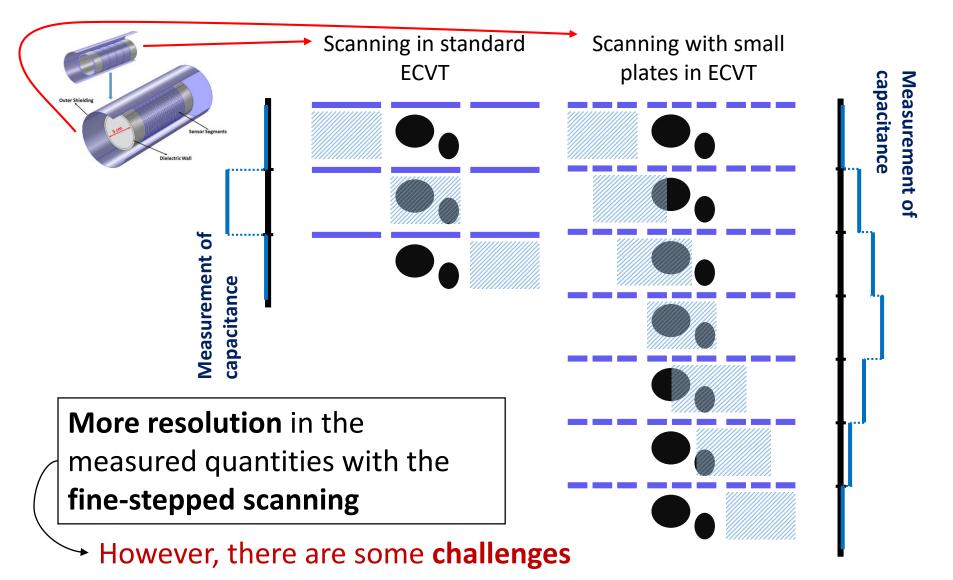
The first order linear approximation $\Delta C = \frac{d\xi}{d\epsilon} (\Delta \epsilon) + O((\Delta \epsilon)^2)$


 $\mathbf{C}_{\mathbf{M}\times\mathbf{1}}=\mathbf{S}_{\mathbf{M}\times\mathbf{N}}\mathbf{G}_{\mathbf{N}\times\mathbf{1},}$

Where $M = \frac{n(n-1)}{2}$ are the number of independent sensor measurements, N is the number of pixels in the sensing domain and the sensitivity matrix **S** is defined as


$$S_{ij}[n] = \frac{1}{V_i V_j} \int_{v[n]} \nabla \varphi_i \cdot \nabla \varphi_j dv$$

Fundamental idea of the Adaptive ECT/ECVT



Fundamental idea of the Adaptive ECT/ECVT

Fundamental idea of the Adaptive ECT/ECVT (3)

ECVT Challenges

>ECT image reconstruction is an ill-posed and ill-conditioned inverse problem.

➤Solution is very sensitive to measurement errors.

- Number of independent measurements are limited due to SNR considerations (setting a minimum electrode plate size) hence problem is underdetermined.
- Image reconstruction algorithm does not cater for soft-field nature of the ECT sensing field (quasi-static Laplacian field).

≻Limited spatial resolution.

➢ Fast and robust reconstruction algorithms for real time applications.

Eternoles

Future Algorithm work


The biggest **issue** that we have is the **exhaustive search** on \mathcal{L} that we need to do to **find the sensitivity vector**

For ECT with 30 small electrodes

- meas elect 1, 2, elect → 813
- → 1626 possible measurements with electrode combinations of 1, 2, 3, 5, 6, 10, 15 electrodes
 - → 813 possible measurements with electrode combinations of 3, 5, 6, 10, 15 electrodes

For ECVT with 216 small electrodes

- → 233843 possible measurements with electrode combinations of 1, 2, 3, 4, 6,...,108 electrodes
- → 102105 possible measurements with
 ns of electrode combinations of
 des 9, 12, 18, 24,...,108 electrodes

We need to find an **approximation procedure** that allows to **reduce** the **size** of the **search**

Adaptive DAS Features

- 288 Plates
- Creation of Transmit and Receive Meta-Plates
- Excitation frequency from 62.5kHz to 4Mhz
- 10V Excitation

This document is proprietary to Tech4Imaging LLC and shall not be used, copied or disseminated without permission.

Front View

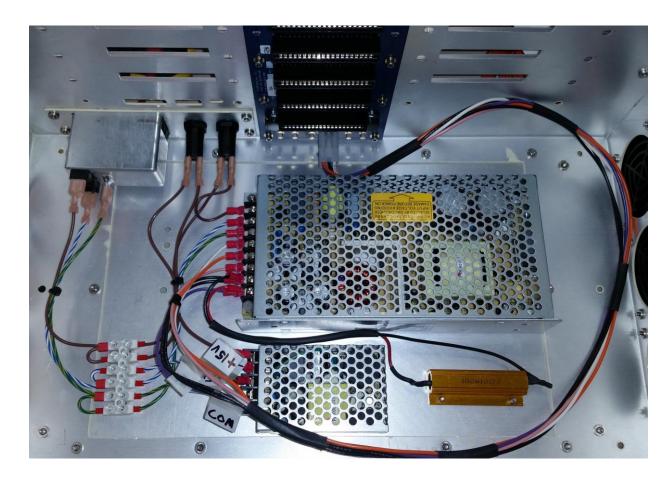
Back View

24 Plate Connector (1 of 12)

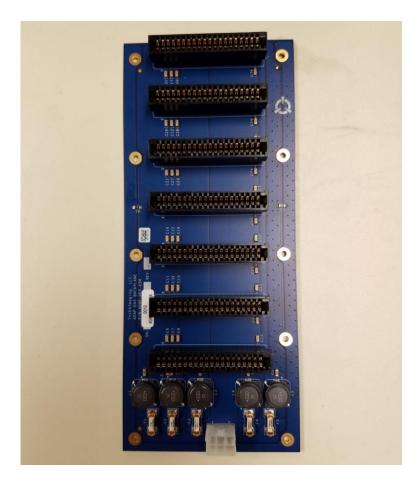
Connector inserted in Adaptive DAS (1 of 12)

36 x 2 Sensor

Chassis


- ✓ Assembles Properly
- ✓ Structure is rigid
- \checkmark Supports circuit boards
- $\checkmark\,$ Mounting interfaces align
- Updates needed:
- □ Controller Board indicator light holes need moved
- □ Receiver board connector holes need enlarged

Power Supplies


- \checkmark Powers on
- \checkmark Voltages are properly distributed
- $\checkmark\,$ Power supplies are not overloaded
- \checkmark Does not overheat

Backplane

- ✓ Aligns with the controller and 6 receiver boards
- $\checkmark\,$ Signals properly routed

Testing Software

Adaptive DAS Channel Selection	_		×
Transmit Plates Receive Plates			$\hat{}$
ADD SWAP REMOVE ADD SWAP REMOVE SET ALL SELECTED			
Save Plate Config Read Plate Config	_		
FPGA (0=master) 0 ADDR READ DATA WRITE Show Bits in Message CLEAR Calibrate Empty Full Collect Manual Mode Set	LSB firs	st	

Phase II A Schedule

- <u>Task 1</u>: *Electrical design of AECVT sensor for high temperatures*
- Task 2: ECVT sensor mechanical design for high temperatures
- Task 3: ECVT sensor fabrication
- Task 4: Build test chamber
- Task 5: Data Acquisition System (DAS) firmware and electronic design
- Task 6: Testing
- Task 7: Implement image reconstruction algorithm based on developed SART technique
- Task 8: Develop feature extraction
- Task 9: System integration and testing in real-time
- Task 10: Software interface
- Task 11: Finalize demonstration unit

Tasks	Project period (Quarter)								
	1	2	3	4	5	6	7	8	
Task 1									
Task 2									
Task 3									
Task 4									
Task 5									
Task 6									
Task 7									
Task 8									
Task 9									
Task 10									
Task 11									

Conclusion

- Higher ECVT resolution is directly proportional to increased number of plates.
- Adaptive ECVT (AECVT) is based on substantial increase in number of synthetic plates using plate segmentation.
- Adaptive ECVT is a new technology at the frontier of higher resolution capacitance imaging:
 - Infinite options of plate arrangements and independent number of measurements
 - Maintain High SNR of acquired measurements
 - Ability to beam ECVT resolution toward a desired region
 - Ability to Zoom ECVT resolution toward a desired region
- More work is required for Algorithm development and testing, an integrated system will be ready by end of Phase IIA.