Development of a Physically-Based Creep Model Incorporating ETA Phase Evolution for Nickel-Base Superalloys

Ninad Mohale – Student Researcher, Michigan Tech, nrmohale@mtu.edu PI: Walter Milligan, Michigan Tech, milligan@mtu.edu Co-PI's: John Shingledecker, EPRI; Cal White and Paul Sanders, Michigan Tech

2018 Annual Review Meeting for Crosscutting Research; 04/10/2018 DE-FE-0027822: Performance period 8/15/2016 – 3/31/2018

Project Objectives

The primary objective of this program is to develop a

physically based creep model

for Nimonic 263 that synthesizes known creep behavior based on gamma prime strengthening with a

new understanding of the effects of eta phase

on creep performance at long service times in fossil energy power plants.

Outline

- Background
- Problem Statement
- Experimental Approach
- Results
- Conclusion

1. Background

Conventional Fossil-Fired Steam Power Plant Nuclear and Combined Cycle Power Plant

Steam Turbine

- High Temperature
- Corrosive Environments
- Long Service Life

Turbine Blade

mannannan

Background – Nimonic 263

- Nickel–base Superalloy
- Excellent corrosion/oxidation resistance
- Good creep performance
- Easy to form and weld (Low volume fraction of γ')
- Candidate material for A-USC piping and other components

Ni	Со	Cr	AI	Ti	Мо	Fe	Mn	Si	С
48	20	20	0.60	2	6	0.70	0.60	0.40	0.06

Background – Nimonic 263

- Over long service life and at high temperatures, η phase is known to form at the expense of γ' phase
- Previous creep studies on Nimonic 263 and similar alloys have shown growth of η phase during the course of creep tests

- **Gamma Prime Particles**
- Start of Eta Phase at Grain Boundary

Inconel 740 750°C [Shingledecker and Pharr 2012]

<mark>ط Michigan Technological</mark> University

7355.2 hrs

ELECTRIC POWER RESEARCH INSTITUTE

 $2\mu m$

Nimonic 263 Evolution

- L1₂ Structure
- Spherical
- Principal Strengthening Phase

- Plate/Needle like
- Forms at the expense of γ'

Conflicting Reports from Literature about η Phase

Nimonic 263 [Zhang 2002]	800 °C	700 hrs	Reduces creep ductility; cavity nucleation and microcracking; avoid near grain boundary
Nimonic 263 [Zhao 2002]	816-840 °C	1100-1400 hrs	Claim detrimental to strength and ductility
Inconel 740 [Zhao 2003]	750-850 °C	1000 hrs	Presence at grain boundaries reduced impact toughness
Inconel 740 [Evans 2004]	816 °C	2500 hrs	Reduce γ' strengthening/limit grain boundary ductility
Inconel 740 [Shingledecker 2012]	750 °C	2000-20000 hrs	Not detrimental to creep; formation kinetics faster under stress
Inconel 740 [Shingledecker 2013]	750-850 °C	1000-20000 hrs	Reduced creep rupture ductility above 7 vol% eta
Inconel 740 [Unocic 2014]	750 °C	2000-23000 hrs	Not detrimental to creep

2. Problem Statement

- η phase will form in A-USC components in service
- There is **no agreement** in the literature about whether phase is detrimental to creep performance
- There has been no research about how η phase might affect constitutive behavior (creep rates), and therefore life prediction
- η phase might also affect cavitation behavior

3. Experimental Approach

- Want to isolate effects of η phase on Creep performance
- Compare creep performance and deformation mechanism of three materials:
 - Material 1 (γ' only) Standard Commercial Nimonic 263 containing only γ'
 - Material 2 (n only) A modified Michigan Tech alloy based on Nimonic 263

that contains no γ' , only η

• Material 3 ($\gamma' + \eta$) - Standard Commercial Nimonic 263 that has been heat

treated prior to creep test to contain both γ' and η

Material 1: Nimonic 263 - γ' only

- Widely studied
- Creep data available from an earlier research carried out by EPRI
- Crept specimens from EPRI available for deformation studies

TIME (hours)

🛃 Michigan Technological University

CREEP STRAIN (%)

Material 2: Modified Nimonic 263 based alloy - η only

- Earlier Research Goal to design alloys containing only η and no γ'
- DOE Approach utilizing Thermocalc was used with Nimonic 263 as starting point
- Out of 32 combinations, 3 alloys were produced and fabricated
- Lower Al, Mo and higher Ti, Nb, Ta and W (than N263) formed essentially only η and no γ'
- Creep rupture tests were conducted from 700 °C 850 °C
- Larson Miller Parameter was plotted against rupture strength, and deformation mechanisms were determined

Modified Michigan Tech η Alloy

Alloy Element	AI	Со	Cr	Fe	Mn	Мо	Nb	Ni	Та	Ti	V	w	С
NIMONIC 263	0.47	19.9	19.8	0.40	0.39	5.93	0.01	Bal	0	2.10	0.01	0.16	0.06
Alloy 20	0.14	20.7	20.8	0.48	0.42	0.01	1.92	Bal	1.09	2.75	0.85	1.94	0.07

Michigan Technological University

EPEI ELECTRIC POWER RESEARCH INSTITUTE U.S. DEPARTMENT OF ENERGY ICCINOLOGY

Big Picture

	Material 1	Material 2	Material 3
Microstructure Target	All γ'	All η	γ' + η prior to creep test
Thermal Processing	Commercial	Heat treat to form η	This Project
Creep Data available	\checkmark	\checkmark	
Crept Specimen Available?	\checkmark	\checkmark	

<mark>ط Michigan Technological</mark> University

Overview: Material 3 (Nimonic 263 $\gamma' + \eta$)

- Develop Heat treatment for Standard Commercial Nimonic 263 to contain γ' and η prior to creep test
- Study Creep Deformation and Failure mechanisms in:
 - This material, containing γ' and η prior to creep test
 - Standard Nimonic 263 containing only γ' prior to creep test
 - The alloy containing only η
- Modify existing creep models to incorporate deformation mechanisms of all three materials

Material 3: Nimonic 263 with $\gamma' + \eta$

- Performed simulations in ThermoCalc with η phase 'on' and 'off' to work around sluggish η phase formation
- Conducted Literature review for experimental findings of phase formations to supplement ThermoCalc
- Samples were heat treated at 750°C, 800°C, 850°C, 900°C for 100hr, 500hr, 1000hr, 5000hr

Material 3: Nimonic 263 with γ' + η

- Performed simulations in ThermoCalc with η phase 'on' and 'off' to work around sluggish η phase formation
- Conducted Literature review for experimental findings of phase formations to supplement ThermoCalc
- Samples were heat treated at 750°C, 800°C, 850°C, 900°C for 100hr, 500hr, 1000hr, 5000hr

Zhao et al., 2001

4. Results

- Finished heat treatments for Material 3 (Nimonic 263 heat treated to contain $\gamma' + \eta$)
- Heat treated samples were studied with SEM to obtain volume fractions of γ' and η , as well as the particle size of γ'
- Results were validated with literature values, ThermoCalc predictions

Typical Aged Nimonic 263 - γ' and η Micrographs

Michigan Technological University

ENERG

TL TECHNOLOGY

Material 3: Heat treated Nimonic 263 - η Volume Fraction

Michigan Technological University

FNFR

Material 3: Heat treated Nimonic $263 - \gamma'$ Particle Coarsening

Based on these results, creep specimens will be heat treated this month to contain η and γ ' at the start of the creep tests

ENERGY IN SUCCESSION IN THE SUCCESSION OF THE SU

Creep Models for γ' alloys such as IN740, Haynes 282 and N263

- Substantial prior research has been conducted by many investigators to develop physically-informed creep models for these types of alloys. (Dyson et al., many others)
- DOE-sponsored research by Shen Chen and his team at GE
 Global Research resulted in an outstanding model that
 worked very well for Haynes 282
 - DE-FE0005859 and DE-FE0024027

Shen Chen 2014

Creep Models for γ' alloys such as IN740, Haynes 282 and N263

- Chen implemented a Dyson-type model in Matlab for Haynes 282.
- These models include microstructural parameters such as γ' size and volume fraction, APB energy, γ' coarsening in service, diffusional parameters, etc.
- The output of the code is plot of creep strain vs time for given input temperature, stresses, variables and precipitate coarsening data over time. *Includes cavitation and failure.*
- Chen gave us his code, and this will be the starting point for our modelling efforts

Creep Deformation Mechanisms in Shen Model

Precipitate Shearing

Dislocation Climb with precipitate by-pass

• Diffusional Creep (grain boundary and bulk)

Creep Model for γ'

 $\varepsilon^{creep} = \varepsilon^{dislocation} + \varepsilon^{diffusion}$

 $\epsilon^{\text{dislocation}} = \epsilon^{\text{climb}} + \epsilon^{\text{shearing}}$

 $\dot{\epsilon}^{diffusion} = \dot{\epsilon}^{lattice_diff} + \dot{\epsilon}^{boundary_diff} + \dot{\epsilon}^{cavity_boundary_diff} + \dot{\epsilon}^{cavity_surface_diff}$

Dislocation Creep Model for γ'

$$\dot{\varepsilon}^{disloc} = \begin{cases} \rho A f (1-f) \left(\sqrt{\frac{\pi}{4f}} - 1 \right) \sinh \left(C \quad \frac{\sigma_{eff} - \sigma_B - \sigma_0}{M \, k \, T} \, b^2 \lambda \right) & \text{if } \sigma_{eff} - \sigma_B - \sigma_0 > 0 \\ 0 \text{ otherwise} \end{cases}$$

$$\sigma_{shear} = \frac{\gamma_{APB}}{2b} \left[\left(\frac{12 \gamma_{APB} f r}{\pi G b^2} \right)^2 - f \right] \right]$$

$$\sigma_{climb} = \frac{2\mathbf{f}}{1+2\mathbf{f}} \sigma_{eff} \left[1 - \exp\left(-\frac{1+2\mathbf{f}}{2(1-\mathbf{f})} E \frac{\varepsilon^{disloc}}{\sigma_{eff}}\right) \right]$$

Dislocation Creep Model for γ'

 $\acute{\epsilon}^{\text{ diffusion}} = \acute{\epsilon}^{\text{lattice}_\text{diff}} + \acute{\epsilon}^{\text{boundary}_\text{diff}} + \acute{\epsilon}^{\text{cavity}_\text{boundary}_\text{diff}} + \acute{\epsilon}^{\text{cavity}_\text{surface}_\text{diff}}$

$$\begin{aligned} \dot{\varepsilon}^{\text{lattice}_\text{diff}} &= \xi \beta \ \sigma_{applied} \left(1 + \varepsilon^{creep}\right) \\ \dot{\varepsilon}^{\text{boundary}_\text{diff}} &= 3 \ \pi \ \xi \left(\frac{1}{d}\right)^3 \ \sigma_{applied} \left(1 + \ \varepsilon^{creep}\right) \\ \dot{\varepsilon}^{\text{cavity}_\text{boundary}_\text{diff}} &= \xi \frac{1}{d} \frac{\sigma_{applied}}{\ln(\frac{1}{\tilde{\omega}_{boundary} \ diff})} \\ \dot{\varepsilon}^{\text{cavity}_\text{surface}_\text{diff}} &= \xi \alpha \ \frac{\sqrt{\tilde{\omega}_{surface} \ diff}}{\left(1 - \tilde{\omega}_{surface} \ diff\right)^3} \ \sigma_{applied}^2 \end{aligned}$$

Code development, this project

 Chen's model is specific to Haynes 282. Material parameters are hard-coded into the Matlab files. Precipitate coarsening is handled by a look-up table and interpolation.

- To make the code usable for new alloys, and to make it easier to use, we have:
 - Implemented a GUI that allows the user to enter and quickly change all the important variables in an intuitive interface.
 - Changed the code to allow input of an LSW precipitate coarsening model in the GUI instead of hard-coded look-up tables.

MATLAB Flowchart

MATLAB Flowchart

5. Conclusion

- Isolate effects of η in creep properties of Nimonic 263
- We have the data for Nimonic 263 with γ' and η , We have the preliminary Creep Model, now we combine
- $\gamma' + \eta$ phase: Will decide 2 heat treatments for Creep tests, this quarter
- Over next year:
 - Study Creep Deformation and Failure Mechanisms with TEM
 - Modify preliminary MATLAB model to include studies on 'all γ ' ', 'all η ' and ' γ ' + η ' materials

Milestones

Milestone Title/Description	Planned Completion Date	Actual Completion Date
2.0 Develop heat treatments to form γ' and η phases in Nimonic 263 prior to creep testing	1/31/2017	3/1/2018
2.1 Mine existing data from the literature. If insufficient, conduct simulations with Thermo-Calc and kinetics software to predict η phase formation in reasonable amounts of time for new material. Establish best route to form γ' such that γ' structure is as close to standard Nimonic 263 as possible.	11/30/2016	3/1/2018
2.2 Validate predictions in (2.1) experimentally, and adjust as needed.	1/31/2017	95%
Critical Decision Point. Is it possible to produce a suitable $\gamma' + \eta$ microstructure via a relatively short time (< 1,000 hour) heat treatment? If yes, continue. If not, see Section B, Risk Management, for mitigation strategies.	1/31/2017	12/22/2017
3.0 Conduct creep tests at EPRI on new Nimonic 263 that had been modified to contain both γ' and η phases.	8/31/2018	20%

Milestones

Milestone Title/Description	Planned Completion Date	Actual Completion Date
4.0 Assess microstructures as well as deformation and damage mechanisms in all three microstructural	2/20/2040	4.50/
conditions (100% γ' , 100% η , mixture of $\gamma' + \eta$.)	2/28/2019	15%
4.1 Conduct optical, SEM and TEM microscopy to quantify phase transformations, precipitate size evolution, deformation mechanisms (TEM), and damage evolution.	10/31/2018	10%
4.2 Establish effects of microstructure on deformation mechanisms in all three microstructures	1/31/2019	0%
4.3 Use results of (4.1) and (4.2) to quantify the effects of η on creep performance of Nimonic 263.	2/28/2019	0%
E. 0. Modify existing y' based cross models to account explicitly for the effects of y phase as determined in (4.)	9/21/2010	250/
So would get sting γ based the photoes to account explicitly for the effects of η phase as determined in (4.)	8/31/2019	5570
5.1 Assess and integrate best damage models from the literature	2/28/2019	50%
5.2 Adapt models to explicitly include the transformation from metastable γ' to equilibrium η and resultant changes in damage mechanisms	6/30/2019	0%
5.3 Validate model with select creep experiments	8/31/2019	0%

