Pilot Plant Testing of Piperazine (PZ) with Advanced Flash Regeneration

Gary T. Rochelle (PI) & Eric Chen
The University of Texas at Austin

Katherine Dombrowski (PM), AECOM

Andrew Sexton (PjM), Trimeric

Bruce Lani, DOE PM
Advanced Flash Stripper (AFS)

CO₂ (90% removal)

Heat recovery exchanger

Cold Rich BPS
7.5%
47°C
Rich solvent
0.39 mol CO₂/mol alk

Lean solvent
L/G=3.9 kg/kg
0.24 mol CO₂/mol alk

Cross exchanger

Warm Rich BPS
29.6%
116°C

Stripper
(2 m RSR #0.5
2 m RSR #0.7)

Steam heater

Vented gas

H₂O

0.5 MW

Absorber

Flue gas

ΔT=10.0°C

ΔT=10.0°C

ΔT=8.7°C

ΔT=8.7°C

ΔT min =3.3°C

6.3 bar
32.3% H₂O

150°C

D T=7.4°C

D T=7.4°C
New Equipment on Skid

CO₂ (90% removal)

Vented gas

Absorber

Flue gas 0.5 MW

Lean solvent
L/G=3.9 kg/kg
0.24 mol CO₂/mol alk

Cross exchanger

Heat recovery exchanger

Cold Rich BPS
7.5%
47°C
Rich solvent
0.39 mol CO₂/mol alk

Warm Rich BPS
29.6%
116°C

Stripper (2 m RSR #0.5
2 m RSR #0.7)

Steam heater

6.3 bar
32.3% H₂O

71°C

ΔT=10.0°C

ΔT=8.7°C

ΔT=7.4°C

ΔTₘᵢₙ=3.3°C

150°C

D T=7.4°C

D Tₘᵢₙ=3.3°C

150°C
Outline

• Funding and objectives : NCCC fall 2017
• Capital and Energy << MEA
• Solvent Management of PZ - Prepared
## Project Budget ($million)

<table>
<thead>
<tr>
<th></th>
<th>BP1</th>
<th>BP2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal</td>
<td>1.6</td>
<td>3.3</td>
<td>5.2</td>
</tr>
<tr>
<td>Cost Share</td>
<td>1.1</td>
<td>0.3</td>
<td>1.5</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>2.7</td>
<td>3.6</td>
<td>6.7</td>
</tr>
</tbody>
</table>

Cost share by CO₂ Capture Pilot Plant Project (C2P3)
Objective is to develop PZ with advanced regeneration at 150°C

PZ
- Optimize solvent (8m vs 5m)
- Demonstrate resistance to oxidation, nitrosation, & corrosion

Regeneration
- Two stage flash (2SF)
- Advanced flash stripper (AFS)

Aerosols
- Formation and control
- Characterization
Phased testing at UT SRP and NCCC to optimize PZ absorption/regeneration
Phased testing at UT SRP and NCCC to optimize PZ absorption/regeneration

**SRP 2017**
- AFS
- 5m PZ
- 4-20% CO$_2$
- Aerosol
- Corrosion

Completed MTR/DOE

**NCCC 2017**
- AFS
- 5m PZ
- Aerosol
- Corrosion
- Oxidation

Ready to operate

**MTR/DOE BP2**
- 0.1 MW
- CO$_2$ in air

**AECOM/DOE BP2**
- 0.5 MW
- Flue gas
Our test window:
Fall 2017 parametric
Spring 2018 long-term

<table>
<thead>
<tr>
<th>Activity</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skid Installed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commissioning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start-Up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parametric Field Campaign</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long-term Field Campaign</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site Restoration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis/Reporting</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note: The table includes a legend for colors and symbols used to indicate different statuses.*
Advanced amine scrubbing gives 50% efficiency
Limited by capital-energy tradeoff

$W_{eq} \text{ (kJ/mol CO}_2\text{)}$

- **DOE Case 10**
  MEA/SS
  (120°C, $P_{\text{strp}}=1.6$ bar)

- **SRP 2015**
  PZ/AFS
  (150°C, $P_{\text{strp}}=6$ bar)

**Power Balance Components:**
- $W_{\text{min,comp}}$
- $W_{\text{lost,absorber}}$
- $W_{\text{lost,cross X}}$
- $W_{\text{lost,reboiler}}$
- $W_{\text{lost,comp}}$
- $W_{\text{lost,others}}$
AFS also works with other solvents

<table>
<thead>
<tr>
<th>Solvent</th>
<th>kg’ (10^{-7} mol/Pa-s-m^2)</th>
<th>W_{eq} (kJ/mol CO_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Simple stripper</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7m MEA</td>
<td>4.3</td>
<td>36.3</td>
</tr>
<tr>
<td>10m DGA</td>
<td>3.6</td>
<td>37.0</td>
</tr>
<tr>
<td>8m PZ</td>
<td>8.5</td>
<td>34.9</td>
</tr>
<tr>
<td>5m PZ</td>
<td>11.3</td>
<td>36.5</td>
</tr>
<tr>
<td>2m PZ /3m HMPD</td>
<td>10.1</td>
<td>34.9</td>
</tr>
</tbody>
</table>

- Rich \(P_{CO_2}^* = 5 \text{ kPa}, \) Lean \(P_{CO_2}^* = 0.2 \text{ kPa}\)
- Optimum cross exchanger \(\Delta T_{LM} = 5K \left(\frac{\mu}{\mu_{MEA}}\right)^{0.175}\)
AFS provides reversible stripper performance
90% removal, 0.24 lean ldg
Possible long term conditions at NCCC
0.24 lean ldg, 150ºC/82 psia stripper, 2x20 ft absorber packing

<table>
<thead>
<tr>
<th>CO₂ removal (%)</th>
<th>Gas Rate (MW)</th>
<th>Rich Ldg (mol CO₂/eq PZ)</th>
<th>L/L_{min}</th>
<th>W_{eq} (kwh/tonne)</th>
<th>Q (GJ/tonne)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>0.5</td>
<td>0.387</td>
<td>1.006</td>
<td>256</td>
<td>2.56</td>
</tr>
<tr>
<td>98.5</td>
<td>0.5</td>
<td>0.366</td>
<td>1.16</td>
<td>260</td>
<td>2.61</td>
</tr>
<tr>
<td>95.4</td>
<td>0.8</td>
<td>0.380</td>
<td>1.10</td>
<td>274</td>
<td>2.77</td>
</tr>
</tbody>
</table>
PZ losses and environmental impact

• Resistant to corrosion, use more carbon steel
• Moderate volatility
  – Manage losses with water wash
  – Manage impurities with thermal reclaiming
• Manage aerosol with grow and capture
• Resistant to Degradation
  – Thermally stable to 150°C
  – Oxidation, 4x less than MEA
  – Nitrosation, decompose at 150°C
• Manage solid precipitation with rich storage
• Two ER corrosion probes in stripper
  – 316L SS
  – 1010 CS
• One ORP Probe
• In addition, one ER probe in absorber sump
## SRP Pilot Plant Corrosion 2017

<table>
<thead>
<tr>
<th>Location</th>
<th>Alloy</th>
<th>T (°C)</th>
<th>Avg. Loading (mol CO₂/mol N)</th>
<th>Corrosion (μm/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorber</td>
<td>C1010</td>
<td>30</td>
<td>0.33</td>
<td>331</td>
</tr>
<tr>
<td>Stripper</td>
<td>C1010</td>
<td>150</td>
<td>0.21</td>
<td>325</td>
</tr>
<tr>
<td>Stripper</td>
<td>316L</td>
<td>150</td>
<td>0.21</td>
<td>174</td>
</tr>
</tbody>
</table>

- Absorber corrosion greater than expected

### Corrosion (μm/yr)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Good</strong></td>
<td>100 - 500</td>
</tr>
<tr>
<td><strong>Poor</strong></td>
<td>1000 - 500</td>
</tr>
<tr>
<td><strong>Unacceptable</strong></td>
<td>5000+</td>
</tr>
</tbody>
</table>
• Low $\text{Fe}^{2+}$ solubility in PZ may result in $\text{FeCO}_3$ protective layer.
Dissolved oxygen and metals increase oxidation when cycling from 55 to 150°C

- 5-8 m PZ
- Cycled to 150 °C
- ○ D.O. Stripping
- ● No D.O. Stripping
- ▲ >1 wt. % Inh A

1.9 mol NH₃/(kg-hr-mol Fe²⁺)

<0.03 mmol/kg Fe²⁺ required to catalyze oxidation

0.4 mmol NH₃/(kg-hr) due to D.O.
Oxidation Mitigation

• Reaction w D.O.: 0.05 mmol/kg/cycle in HTOR
  • Minimize holdup at high temperature before stripper
  • Strip O₂ with N₂ mmol/(kg-cycle-mmol/kg Fe²⁺)
• Fe²⁺ solubilized by degradation products
  • Oxidation → Fe²⁺ accumulation → more oxidation
  • NO₂ → MNPZ → Oxidation in pilots w/ coal flue gas
    • Prescrub NO₂ and reclaim solvent to minimize Fe²⁺
Growth slows down at high part. number conc
5 m PZ, NCCC conditions

Diameter (µm)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ABS BOT  Z/Z_{tot}  Dry Bed  WW  ABS TOP

1 part./cm$^3$

$10^7$

$5 \times 10^7$

$10^8$

Growth slows down at high part. number conc
Baghouse at NCCC

Coal Combustion

- Selective Catalytic Reduction
- Electro-Static Precipitator
- Bag House (2016)
- Flue Gas Desulfurization
- Pre-Scrubber
- CO₂ Capture

Hg
Fly Ash
SO₃
SO₂
SO₂
CO₂

NOₓ
Fly Ash
SO₃

Activated Carbon
Baghouse at NCCC significantly reduced MEA emissions.
Produced 1.7 grams/minute SO$_3$ during UT-SRP tests
10 to 30 ppm SO$_3$ usually not always produce aerosol
Conclusions

• The Advanced Flash stripper will reduce $W_{eq}$ by 10-20% for PZ and other solvents

• 5 m PZ is a superior solvent
  • Fast absorption, thermally stable, high P stripper
  • Good resistance to corrosion, oxidation
  • Managed aerosol
• **Acknowledgement:** “This material is based on work supported in part by the Department of Energy under Award Number DE-FE0005654.”

• **Disclaimer:** “This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.”