DEVELOPMENT OF INTELLIGENT MONITORING SYSTEM (IMS) MODULES FOR THE AQUISTORE CO₂ STORAGE PROJECT

DE-FE0026516

José A. Torres
Energy & Environmental Research Center

U.S. Department of Energy
National Energy Technology Laboratory

Mastering the Subsurface Through Technology Innovation, Partnerships and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting
August 1–3, 2017
PRESENTATION OUTLINE

- Technical status
 - Workflow design
 - Database
 - IMS modules
 - Graphical user interface (GUI)
- Accomplishments to date
- Synergy opportunities
- Lessons learned
- Summary
2) IMS Module Development
 2.1) Workflow Design
 2.2) Data-Preprocessing Design
 2.3) Seismic Data Integration
 2.4) History Match Automation
 2.5) Integration and Automation Testing

3) IMS Architecture Development
 3.1) Database Development
 3.2) Data Integration
 3.3) IMS Interface Development
 3.4) Process and System Testing
WORKFLOW DESIGN (2.1)

Data Analysis and Preprocessing for History Matching
- Continuous Monitoring Data Pipeline
- Periodical Monitoring Data Pipeline

Seismic Data Integration and Automatic History Matching
- Automatic History Match
- Geomodeling Updates
- Seismic Data Integration
 - CMOST
 - GSLIB/Python
 - Python/Petrel

Data Analysis for Risk Management
- Data Analysis
- Data Integration
 - R/Python
 - Excel/NRAP

GUI

Monitoring Data
- Periodical
- 4-D Seismic
- Well Logs
- Continuous
- Temperature
- Pressure
- Injection Rate
DATABASE DEVELOPMENT (3.1)

• Creation and population of a database that serves as a core data-handling system for the project.
 – First component developed (Q1 2016)
 – Multiple security features
 – Ongoing updates and improvements

• Currently includes data from the Aquistore CO₂ storage site from April 2015 through April 2017.
DATA PREPROCESSING DESIGN (2.2)

• Link the simulation module to the database (DB).
 – Allow for both import and export of key data.
 – Quality control/quality control (QC/QA) before being delivered to simulation models.
 – Two possible interaction options: automatic and manual.
• Filtering to remove noise.
• Data reduction to sizes and rates compatible with simulations and algorithm performance.
HISTORY MATCH AUTOMATION (2.4)

Real Data → Preprocessed Data → Geologic Model → Reservoir Simulation

Real-time monitoring data:
- Pressure,
- CO₂ injection rate

Well logs:
- PNL,
- Spinner survey

Seismic data:
- CO₂ plumes from 4-D difference computations

Evaluate Global and Local Objective Functions

Adjust Model Parameters

Goodness of Fit Criteria Satisfied?

Yes → Simulation Results

No

END CURRENT UPDATE
OBJECTIVE FUNCTION HIERARCHY

Global Objective Function
- Total Error
 - Periodic Data
 - Seismic Shape
 - Continuous Data
 - Well Logs
 - Bottomhole Pressure (BHP)

Local Objective Function
- Total Error
 - Periodic Data
 - Seismic Shape
 - Continuous Data
 - Well Logs
 - Bottomhole Pressure (BHP)

Local Errors
- Total Error
 - Periodic Data
 - Seismic Shape
 - Continuous Data
 - Well Logs
 - Bottomhole Pressure (BHP)

Mathematical Expressions:

Total Error

\[
\text{Total} = \sum \left(\text{Local} \times \text{weighting factor}\right) / \text{Number of Terms}
\]

Local Error

\[
\text{Local} = \sum \left(\text{Error} \times \text{weighting factor}\right) / \text{Number of Terms}
\]

Error

\[
\text{Error} = \sqrt{\sum \left(\text{Simulated} - \text{Measured}\right)^2} / \text{Number of Measurements}
\]
EXAMPLE: REAL-TIME DATA PREPROCESSING
HISTORY MATCH EXAMPLE: CO$_2$ PLUME SHAPE*

Sensitivity of the Simulated CO$_2$ Plume to Local Permeability Multipliers

1X 2X 4X 8X

Goodness of Fit Criteria Satisfied After a History Match Test

*Test case for demonstration purposes only. It does not represent the location of the actual CO$_2$ plume.
HISTORY MATCH EXAMPLE: **WELL LOGS**

- PNL at the Observation Well
- Spinner Survey at the Injector Well
HISTORY MATCH EXAMPLE: BHP
Integration and Analysis of Simulation Outputs with the Direct-Monitoring Data

• Provide immediate feedback via the generation of an “action level.”
 – Examine changes in various inputs.
 – Compare those changes to established site performance and operating limits.
 – Develop threshold decision criteria.

• New algorithms to perform geospatial analysis and advanced statistical analysis are forthcoming.

Example time-series plot showing CO₂ mass injection rate (gray bars), measured bottomhole temperature (BHT) (red line) and predicted BHT (blue squares).
IMS INTERFACE DEVELOPMENT (3.3)

- Design, programming, and implementation of the GUI for the IMS.
- Initial GUI design (Milestone 6) was completed on February 22, 2017.
- Real-time linkage to the database for continuous measurements.
- Query field where the user can select a date range, time frequency, and specific measurements to view or export.
- Expanding to include Task 2 simulation output and Task 3 statistical models.

Example GUI dashboard layout showing BHP, BHT, and CO$_2$ mass injection rate (Qg), and a user query field.
ACCOMPLISHMENTS TO DATE

Completed

• Workflow design
• Initial database schema (M2)
• Data-preprocessing design (M3)
• 3-D seismic algorithm (M4)
• Data integration algorithm (M5)
• GUI design (M6)
• Baseline models (seismic, geology, and reservoir simulation)

Under Way

• Shot record plume tracking tested (M7)
• Design of the automatic history match module (M8)
• Updated database schema (M9)
• Data submission to Energy Data eXchange (EDX) (D2)
LESSONS LEARNED

• Research difficulty:
 – Time requirements for repeat logging or seismic methods
 ➔ Automated history matching may still experience the associated time delay from
 the periodic data acquisition and interpretation.

• Research challenge:
 – Data set incongruence
 ➔ Scientific and engineering judgment needed to transform qualitative interpretations
 into quantitative changes to simulation input in order to improve the simulation output.

• Research gap:
 – Discontinuous injection cycle the normal operating procedure
 ➔ Need to adapt existing analytical and semianalytical models for utilizing
 continuous measurements to account for transient effects.
SYNERGY OPPORTUNITIES

• Potential leverage on advanced techniques for
 – Data integration and assimilation.
 – Data analytics and automated learning.
 – Closed-loop management.

• Collaboration with other R&D projects
 – Field testing of emerging technologies

• IMSs have broad applicability for commercial or demonstration projects.
 – Tools and workflows could be applied in any CO₂ storage project to effectively monitor an active injection site in real time.
PROJECT SUMMARY

• Successfully developed new workflows designed to:
 – Handle real-time monitoring data from the SaskPower database for the Aquistore site.
 – Store and handle information in a secure database.
 – Perform data-preprocessing linked to an automated history match.
 – Integrate periodic and continuous data into automated history match.

• Significant progress towards:
 – Utilizing the continuous monitoring data to model (in real-time) and predict bottomhole conditions.
 – Developing algorithms to establish threshold decision criteria for real-time decision support.
 – Developing associated risk management action levels.

• Future plans:
 – Integrate new seismic data into the modeling and simulation.
 – Complete the programming and implementation of the GUI.
 – Complete the process and system testing.
THANK YOU!
APPENDIX

- Benefits to the program
- Project overview:
 - Goals
 - Objectives
 - Tasks
 - Milestones and deliverables
 - Success criteria
- Organization chart
- Gantt chart
- Bibliography
- Acknowledgments
- Contact information
The Energy & Environmental Research Center (EERC) is developing an intelligent monitoring system (IMS) to automate monitoring of carbon dioxide (CO₂) injection and storage data for the Aquistore site in southeastern Saskatchewan, Canada.

An IMS will allow a CO₂ storage site operator to more efficiently manage operations in the context of the site’s evolving risk profile, to optimize storage efficiency and storage capacity, and to better guide cost-effective monitoring, verification, and accounting (MVA) efforts. In particular, it will allow integrating diverse data from near-surface and subsurface monitoring networks and converting these data into meaningful and actionable information, accommodating output formats of different applications and sensor systems, and providing an interface to automate field operations in order to improve storage performance and efficiency and/or reduce project risk.

This technology contributes to the following Carbon Storage Program efforts: ensure 99% CO₂ storage permanence, develop technologies that improve reservoir storage efficiency and ensure containment effectiveness, and develop best practices manuals for MVA.
PROJECT OVERVIEW – GOALS

Developed and demonstrate software and workflows capable of

1) Improving short- and long-term prediction of the distribution of CO₂ saturations and reservoir pressure by using seismic and pressure data to reduce uncertainty of simulation predictions through iterative automated history matching.

2) Providing processing and integration of monitoring data and simulation results to allow the CO₂ storage site operator to more effectively monitor and manage operations and a site’s evolving risk profile.

3) Providing decision support for improving storage performance and efficiency and/or reducing project risk through expedited response times and minimization of human error.
PROJECT OVERVIEW – OBJECTIVES

• Develop and demonstrate new real-time-data-capable workflows, algorithms, and a user interface which automate the integration of CO₂ storage site-monitoring and simulation data.

• The algorithms and workflows developed will integrate continuous monitoring data, periodic monitoring data, and reservoir simulations with algorithms for visualization and real-time decision-making support.

• Develop and test an automated history-matching workflow to improve short- and long-term prediction of the distribution of CO₂ saturations and reservoir pressure.

• Develop and test a technical user interface that will present the results for visualization and real-time decision support.

• IMS will be completed using monitoring data acquired at Petroleum Technology Research Centre’s (PTRC’s) Aquistore CO₂ storage site near Estevan, Saskatchewan.
PROJECT OVERVIEW – TASKS

1) Project Management and Reporting
2) IMS Module Development
 2.1) Workflow Design
 2.2) Data-Preprocessing Design
 2.3) Seismic Data Integration
 2.4) History Match Automation
 2.5) Integration and Automation Testing
3) IMS Architecture Development
 3.1) Database Development
 3.2) Data Integration
 3.3) IMS Interface Development
 3.4) Process and System Testing

Automated history matching and seismic data integration

Database integration and user interface
<table>
<thead>
<tr>
<th>Task/ Subtask</th>
<th>Milestone/Deliverable Title</th>
<th>Planned Completion Date</th>
<th>Verification Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 – Project Management</td>
<td>M1 – Project Kickoff Meeting Held</td>
<td>12/31/15</td>
<td>Presentation file submitted to DOE.</td>
</tr>
<tr>
<td>2.2 – Data-Preprocessing Design</td>
<td>M3 – Data-Preprocessing Design Completed</td>
<td>6/30/16</td>
<td>Reported in subsequent quarterly report.</td>
</tr>
<tr>
<td>2.3 – Seismic Data Integration</td>
<td>M4 – 3-D Seismic Algorithm Completed</td>
<td>9/30/16</td>
<td>Reported in subsequent quarterly report.</td>
</tr>
<tr>
<td>3.2 – Data Integration</td>
<td>M5 – Draft Data Integration Algorithm Completed</td>
<td>12/31/16</td>
<td>Reported in subsequent quarterly report.</td>
</tr>
<tr>
<td>2.3 – Seismic Data Integration</td>
<td>M7 – Shot Record Plume Tracking Tested</td>
<td>9/30/17</td>
<td>Reported in subsequent quarterly report.</td>
</tr>
<tr>
<td>2.4 – History Match Automation</td>
<td>M8 – Design of History Match Automation Completed</td>
<td>9/30/17</td>
<td>Reported in subsequent quarterly report.</td>
</tr>
<tr>
<td>3.3 – IMS Interface Development</td>
<td>M10 – GUI Coding Completed</td>
<td>10/31/17</td>
<td>Reported in subsequent quarterly report.</td>
</tr>
</tbody>
</table>
PROJECT OVERVIEW – SUCCESS CRITERIA

Task 2

2.2) Data-Preprocessing Design (100% SC*)
♦ Milestone (M3) completed.

2.3) Seismic Data Integration (50% SC*)
♦ 3-D seismic algorithm completed (M4)
♦ Shot record plume tracking in progress (M7)

2.4) History Match Automation (70% SC*)
♦ Milestone (M8) in progress

2.5) Integration and Automation Testing (30% SC*)
♦ Subtask initiated

Task 3

3.1) Database Development (60% SC*)
♦ Initial database schema completed (M2)
♦ Updated database schema in progress (M9)

3.2) Data Integration (70% SC*)
♦ Milestone (M5) completed

3.3) IMS Interface Development (40% SC*)
♦ Milestone (M6) completed

*Approximate percentage of subtask completion (apc) by August 1, 2017
GANTT CHART

Deliverables (D)
- D1: Updated PMP
- D2: Data Submission to EDX
- D3: Interim Report - Shot Record Plume Tracking
- D4: Topical Report - Data Integration for Risk Profiling
- D5: Final Technical Report

Milestones (M)
- M1: Project Kickoff Meeting Held
- M2: Initial Database Schema Completed
- M3: Data-Processing Design Completed
- M4: 3-D Seismic Algorithm Completed
- M5: Draft Data Integration Completed
- M6: Initial GUI (Graphical User Interface) Design Completed
- M7: Shot Record Plume Tracking Tested
- M8: Design of History Match Automation Completed
- M9: Updated Database Schema Completed
- M10: GUI Coding Completed
- M11: Initial Automation Testing Completed
- M12: Full System Testing Initiated
- M13: Process and System Testing Completed

Activity Bar
- Summary Task
- Critical Path
BIBLIOGRAPHY

No peer-reviewed publications generated from this project to date.
ACKNOWLEDGMENT

This material is based upon work supported by the U.S. Department of Energy National Energy Technology Laboratory under Award No. DE-FE0026516.

Disclaimer

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
CONTACT INFORMATION

Energy & Environmental Research Center
University of North Dakota
15 North 23rd Street, Stop 9018
Grand Forks, ND 58202-9018

www.undeerc.org
701.777.5413 (phone)
701.777.5181 (fax)

José A. Torres
Senior Reservoir Engineer
jtorres@undeerc.org