NETL R&D: SOFC Materials Development and Degradation Modeling

Gregory A. Hackett, Ph.D.
Energy Process Analysis Team
Fuel Cells Technical Portfolio Lead
July 20, 2016
Outline

• NETL R&IC Solid Oxide Fuel Cell Team
• Portfolio Research Objectives
• Cell and Stack Degradation Research Efforts
 – 3-D Microstructure Reconstruction
 – Impedance Modeling Tool
 – Non-invasive Sensor Implementation
 – Parameter Estimation via Bayesian Statistics
 – Phase Field Modeling, First Principles Modeling
 – Incorporation of Degradation Models in Multi-Physics Model

• Electrode Engineering Innovations
 – Cathode Infiltration
 – Steam Induced Degradation Mitigation
 – Anode Infiltration

• Future Work
NETL SOFC Research Team

NETL (Morgantown, WV)
- Gregory Hackett (Energy Process Analysis)
- Rich Pineault (Innovative Energy & Water)
- Harry Abernathy (AECOM)
- Shiwoo Lee (AECOM)
- Lynn Fan (AECOM)
- Jay Liu (ORISE)
- Hunter Mason (ORISE)
- Yves Mantz (Comp. Mat. Eng.)
- Rick Addis (AECOM)

NETL (Pittsburgh, PA)
- Paul Ohodnicki (Functional Materials)
- Yuhua Duan (Comp. Mat. Eng.)
- Slava Romanov (Geo. Geospatial Analysis)
- Tom Kalapos (AECOM)
- Yang Yu (AECOM)
- Yueh-Lin Lee (ORISE)
- Billy Epting (ORISE)
- Giuseppe Brunello (ORISE)
- Grigoris Panagakos (ORISE)
- Miaolei Yan (ORISE)

NETL (Albany, OR)
- Youhai Wen (Comp. Mat. Eng.)
- Yinkai Lei (ORISE)
- Jason Vielma (ORISE)

West Virginia University
- Harry Finklea (Chemistry)
- David Mebane (MAE)
- Ed Sabolsky (MAE)
- Xueyan Song (MAE)
- Yun Chen (WV Research Corp)
- Ismail Celik (MAE)
- Ozcan Ozmen (MAE, Graduate Student)

Carnegie Mellon University
- Paul Salvador (MSE)
- Tim Hsu (MSE, Graduate Student)
- Rubayyat Mahbub (MSE, Graduate Student)
- John Kitchin (ChE)
- Tony Rollett (MSE)

Penn State University
- Long-Qing Chen (MSE)

U. Wisconsin-Madison
- Dane Morgan (MSE)

Currently 36 Research Team Members
NETL SOFC Research Objectives

- Detailed investigation of fuel cell degradation modes in the anode/electrolyte/cathode facilitates targeted efforts to **improve the longevity** of the fuel cell, ultimately resulting in **decreased system costs**.
 - Develop modeling, analysis, and visualization tools for evaluating and predicting long term performance degradation of relevant SOFC components based on theoretical and experimental evidence (TRL 3-4)

- **Electrode innovations yield improved performance**, thereby resulting in increased cell efficiency and ultimately a **diminished system cost**.
 - Facilitate testing, scale-up, and transfer of SOFC technology to industrial partners (TRL 5-6)

SOFC Program Mission:

“To enable the generation of efficient, low-cost electricity with intrinsic carbon capture capabilities for near-term SOFC natural gas distributed generation systems and long-term coal or natural gas central power systems.”
Cell and Stack Degradation
Motivation/Approach

• Motivation
 – Comprehensive models predicting SOFC stack degradation do not exist or are not sufficiently descriptive to consider all of the primary degradation modes
 • How does structure correlate to function?
 • How does structure change over time?

• Approach
 – Experimental and theoretical results will be incorporated into a computational framework model that will include the most prominent degradation modes, focusing on commercially relevant material sets
 • Microstructural (porosity, particle size)
 • Kinetic (oxygen exchange coefficient, conductivity, cation interdiffusion)
 • Operating Conditions (local overpotential, temperature)
Cell and Stack Degradation
What NETL Offers SOFC Program Partners

• Products
 – Comprehensive Predictive Model (“Hurricane Model” - FY18/19)
 – Impedance Modeling Tool for deconvolution of cell processes (FY17/18)
 – Visualization Tool for maneuvering through 3-D reconstructions (FY17/18)

• Services to Offer (Currently)
 – Testing Facilities
 • Multi-Cell Array for reliable statistical testing, screening
 • Facilities for testing under high steam and other contaminants
 • Test stand capable of testing larger area cells
 – 3-D Microstructural Reconstruction at multiple scales
 – Creation of simulated microstructures for analysis, modeling
 – Bayesian statistical analysis framework tool for finding model parameters and associated uncertainty
 – Reaction and transport modeling for electrochemical performance prediction with impedance simulation
• Need to inform model with reconstructions of REAL microstructures in order to understand degradation processes

• Large volume reconstructions will yield complete distributions to describe
 – Activity and degradation of activity
 – Heterogeneous cell structures

• Proper coupling to computations will yield complete multi-scale description of SOFC performance over time in full operational conditions

• Proper development of microstructurally-based operational models will accelerate development of commercial SOFCs
Cell and Stack Degradation
3-D Microstructure Reconstruction

- Equipment/Approach
 - Ga⁺ Focused Ion-Beam (FIB) SEM (common method, 10×10 μm²)
 - Nano-CT (lower resolution, non-destructive, 50×50 μm²)
 - Xe-Plasma FIB (new, faster, 150×150 μm²)

Ongoing work: Simulating effect of heterogeneity and “mixedness” of composite electrode on cell performance and degradation
Cell and Stack Degradation

3-D Microstructure Reconstruction

- Production of synthetic microstructures using Dream 3-D
- Identification of representative volume element that statistically describes measured phase fraction with acceptable error
- Real SOFC microstructures to overlay modeling degradation processes

Xe Plasma FIB-SEM dataset, 126 x 73 x 12.5 µm, from Carnegie Mellon

Global averages:
- Pore 0.36
- LSM 0.35
- YSZ 0.29

POSTER – “Representative Volumes in Highly Heterogeneous Fuel Cell Materials” – Billy Epting
Cell and Stack Degradation
Impedance Analysis Tool

Goal: Analysis of routine EIS measurements

Impedance Data

Visualization

Validation

Deconvolution

FY16/17: Excel -> Open source with web interface

POSTER – “Characterization of SOFC Cathode Impedance under Polarization Using Appropriate Counter Electrode Design” - Jay Liu/Harry Finklea
Ideal Counter Electrode Development

Desired properties:
- Small R_p
- Separate frequency domain
- Easy to fabricate (<900°C)
- Stable
Benefits of in-situ monitoring of temperature, fuel gas gradients:
- Identify effects on the electrochemical reactions during operation
- Correlate with degradation mechanisms
- Provide instantaneous feedback on operation control
- Optimize fuel utilization rate and device efficiency

Sensing mechanism:
Changes in H₂ pressure modify free carrier concentrations in LSTO sensing layer, resulting in changing absorption of near infrared radiation by the sensing layer.

Cell and Stack Degradation
Parameter Estimation via Bayesian Statistics

Given a mathematical model...

\[X_{i,j} = \Phi_i - \Phi_j \]

Can we improve the estimates of the parameter values?

POSTER – “Interpretation of Impedance Spectroscopy Data on Porous LSM Electrodes”
-Giuseppe Brunello
Cell and Stack Degradation

Parameter Estimation via Bayesian Statistics

The result of Bayesian calibration is a probability distribution of the model’s parameters.
Cell and Stack Degradation

First-Principles Modeling of Cation Diffusion in LSM and YSZ Bulk and Interfaces

Y doped ZrO₂

Sr doped LaMnO₃±δ

interface

interface

Jᵥ₀ →

Jₑ⁻

Cation Diffusion Coefficients vs. T and P(O₂)

Order parameter

Distance

Order parameter

Distance

POSTER – “Ab-initio Modeling of Mn Self-Diffusion in LSM for Solid Oxide Electrochemical Cells”
-Yueh-Lin Lee
Cell and Stack Degradation

Phase Field Modeling - Coarsening

- Phenomenological parameters:
 - Phase fraction C_i
 - Grain orientation η_i

- Free energy density

\[f = f_b(C_i, \eta_i) + \frac{1}{2} \left[\sum_i \kappa_i^\varepsilon (\nabla C_i)^2 + \sum_{j>i} \kappa_c^\varepsilon (\nabla C_i \cdot \nabla C_j) \right] + \frac{1}{2} \sum_{i,j} \kappa_{ii}^\eta (\nabla \eta_i)^2 \]

 - Bulk free energy density f_{bulk} keeps (C_i, η_i) around (0,0) or (1,1)
 - Crossing terms of parameter gradients makes interfacial energy tunable

- Evolution of C_i: Cahn-Hilliard equation, conservative

POSTER – “Phase Field Modeling of Microstructure and Conductivity Evolution in SOFC Electrodes”
- Youhai Wen

Simulated microstructure of cathode.
Red grains: YSZ, Green grains: LSM

- Grain growth
 \[R^n - R_0^n = kt \]
 \(n \approx 4 \), surface diffusion controlled coarsening.
- TPB degradation faster in anode than cathode.
- Tortuosity of Ni/LSM increases with time.
Cell and Stack Degradation

Time Evolution of Conductivity

- Conductivity calculated by solving steady-state Poisson’s equation using bound charge successive approximation (BCSA) algorithm.

\[\nabla \cdot (\sigma(\vec{r}) \vec{E}) = -\frac{\partial \rho}{\partial t} = 0 \n\]

- Conductivity evaluated as a function of phase fraction of YSZ and LSM.

- Consistent with increasing of tortuosity for the electrode phase.

- Degradation slower in anode

Cell and Stack Degradation

Modeling Degradation due to Grain Coarsening

- A simple degradation model is applied to the cathode of a SOFC with dimensions and operating conditions given below.
- The microstructure properties are updated as a function of time in order to study the effect on cell performance.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cathode Diameter</td>
<td>1.7 cm</td>
</tr>
<tr>
<td>Anode Diameter</td>
<td>2.54 cm</td>
</tr>
<tr>
<td>Cathode thickness</td>
<td>50 μm</td>
</tr>
<tr>
<td>Cathode active layer thickness</td>
<td>30 μm</td>
</tr>
<tr>
<td>Anode thickness</td>
<td>900 μm</td>
</tr>
<tr>
<td>Anode active layer thickness</td>
<td>30 μm</td>
</tr>
<tr>
<td>Electrolyte thickness</td>
<td>10 μm</td>
</tr>
<tr>
<td>Cell Temperature</td>
<td>800 °C</td>
</tr>
</tbody>
</table>
• Property models are developed using a combination of physics and empirically fit equations
• For this preliminary study, only the properties in the cathode are modified

Cell and Stack Degradation

Modeling Degradation due to Grain Coarsening

• Predicted polarization and power density both exhibit degradation
Cell and Stack Degradation

Modeling Degradation due to Grain Coarsening

- Impedance analysis clearly indicate degradation
- Only the impedance due to the cathode changes
 - Cathode arc peaks between $\sim 10^1$ and 10^2 Hz
• Impact of individual degradation modes can be compared to overall cell degradation
Electrode Engineering Innovation
Motivation/Approach

• Motivation
 – Novel materials and production methods may be available to increase efficiency and reduce cost at the cell level, but this may not be feasible to commercial providers producing large volumes with well-established methods
 – Need to identify a simple/low cost method to modify current SOFC production methods/material sets

• Approach
 – Tailor electrode infiltration techniques to improve performance and endurance of commercially available cells
 – Direct collaboration with SOFC Program Industrial Partners
• NETL has developed and patented* a single-step cathode infiltration technique that can be utilized by commercial SOFC manufacturers to improve their cell performance and durability
 – Proven performance gains of
 • 10% peak power increase
 • 33% reduction in degradation rate
 • 200% lifetime increase
 – Low-cost ($0.006/cm²)
 – Scalable
 – Ready for technology transfer
 • Collaboration with industry
 – Ready for any cell geometry

<table>
<thead>
<tr>
<th>Classification</th>
<th>Composition</th>
<th>Conduction type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perovskite cobaltite (ferrite, manganite)</td>
<td>LSCO, PSCO, SSCO (LSF, LSM)</td>
<td>MI EC</td>
</tr>
<tr>
<td>Pt-substituted perovskite</td>
<td>LSCO-Pt, PSCO-Pt</td>
<td>MI EC / Electronic</td>
</tr>
<tr>
<td>Perovskite-related (K$_2$NiF$_4$)</td>
<td>(LaSr)$_2$CoO$_4$, (PrSr)$_2$CoO$_4$, La$_2$NiO$_4$</td>
<td>MI EC / Electronic</td>
</tr>
<tr>
<td>A-site alkaline earth cation(s) perovskite</td>
<td>BSCF, SCF</td>
<td>MI EC / Electronic</td>
</tr>
<tr>
<td>Fluorite structure oxide</td>
<td>SDC</td>
<td>Ionic</td>
</tr>
<tr>
<td>Spinel oxides</td>
<td>SrFe$_2$O$_4$, BaFe$_2$O$_4$ etc.</td>
<td>Electronic</td>
</tr>
<tr>
<td>Precious metal</td>
<td>Pt, Pd, Rh</td>
<td>Electronic</td>
</tr>
<tr>
<td>Single component</td>
<td>Co, Sr, Fe, Mn</td>
<td>Electronic / insulator</td>
</tr>
<tr>
<td>Combination</td>
<td>LSM-LSC</td>
<td></td>
</tr>
</tbody>
</table>
Use of cathode infiltrate materials in order to reduce steam-induced degradation

- Elevated steam content investigated on LSM cathode: 3-20%
- Infiltrate materials include:
 - Single component (Mn, Co),
 - Spinel ferrites (SrFe$_2$O$_4$, BaFe$_2$O$_4$)
- Appropriate nanomaterial infiltration improves performance and mitigates water induced degradation of an LSM cathode
SrFe$_2$O$_4$ infiltrated LSM/YSZ, 800°C, 10% steam for ~800 hours

- No original SrFe$_2$O$_4$ nano grains were found after operation.
- Existence of Fe-doped LSM nano-crystals/particles on the backbone.
- Fe diffused into the LSM backbone
- Existence of Mn oxide nano-grains.
- Occurrence of “nano-voids” in the LSM backbone.
• Prefer to enhance existing commercial anodes before reduction
 – NiO/YSZ-support contains <25% porosity (difficult to impregnate)
 – Industry does not want to modify their developed anode-microstructure after decades of development
 – Pre-reduced anode-supported SOFCs show very low strength

• Prefer to eliminate multiple infiltration steps
 – Eliminate days of processing
 – Eliminate inconsistent deposition from uncontrolled deposition rate and drying

POSTER – “Catalyst Infiltration of SOFC Electrodes Assisted by a Bio-surfactant” – Ozcan Ozmen
Electrode Engineering Innovation

Anode

Mussel Inspired Bio-surfactant SOFC Electrode Infiltration*

- Enhance wetting of the electrode surface, target deposition of nanoparticles by chelating infiltrated metal cations with surfactant

Polymerized catechols, such as dopamine and nor-epinephrine used as bio-adhesive surfactant for electrode backbone.

Electrode dip-coated by poly-dopamine (PDA) and poly-epinephrine (PNE) trap up to 3 times more nanoparticles per step. CeO₂ infiltration chosen as a representative catalyst system

* US Patent Application No. 14/963,564
O.Ozmen et al., Material Letters 164, 2015
PDA/PNE Assisted CeO₂ Infiltrated Cells @ 300 h Operation

Degradation/Performance Summary

- PNE-assisted infiltrated cells retained higher power density (10-14%) with lower degradation after 300 h
- PDA-PNE modified infiltration process produced finer and more discrete nano-catalyst deposits.

*US Patent Application No. 14/963,564
O.Ozmen et al., Material Letters 164, 2015*
Future Work

• Continued collaboration with Industry/SOFC Core Teams
• Cell and Stack Degradation
 – Continued integration of degradation models into Comprehensive Predictive Model
 – Finalization of Impedance Modeling Tool
 – Finalization/release of Microstructure Visualization Tool
• Electrode Innovation Engineering
 – Evaluation of new set of materials for infiltration identified by DFT
 – Characterization of infiltrates that mitigate steam induced degradation
 – Build upon success of anode infiltration
 • Graded methane reforming reaction
 • Redox tolerant anodes
 – Transfer of single-step cathode infiltration technique to industry
Acknowledgments

DOE/NETL
- Bhima Sastri (FE-HQ)
- Shailesh Vora
- Joe Stoffa
- Kristin Gerdes
- Geo Richards
- Kirk Gerdes

Contact Information
Gregory A. Hackett
Systems Engineering and Analysis
Research & Innovation Center
NETL
Gregory.Hackett@netl.doe.gov
• “Phase field modeling of microstructure and conductivity evolution in SOFC electrodes” – Youhai Wen
• “Effects of Humidity on Degradation of Sr-Fe-O Infiltrated Solid Oxide Fuel Cells” – Lynn Fan
• “Catalyst Infiltration of SOFC Electrodes Assisted by a Bio-surfactant” – Ozcan Ozmen
• “Characterization of SOFC Cathode Impedance under Polarization Using Appropriate Counter Electrode Design” – Jay Liu
• “Interpretation of Impedance Spectroscopy Data on Porous LSM Electrodes” – Giuseppe Brunello
• “Representative Volumes in Highly Heterogeneous Fuel Cell Materials” – Billy Epting
• “Ab Initio Modeling of Mn Self-Diffusion in La$_{1-x}$Sr$_x$MnO$_3$ (X=0 and 0.25) for Solid Oxide Electrochemical Cells” – Yueh-Lin Lee
• “Evidence of the Space Charge Layer Evolution at the YSZ Grain Boundaries” – Xueyan Song