Acknowledgements

GTO: Alex Prisjatschew, Eric Hass, Michael Weathers

NETL: Traci Rodosta, Andrea Dunn, Erik Albenze, Kanwal Mahajan

EMRTC: Robert Abernathy

SubTER Team:

SNL: Dennis King, Mark Grubelich, James Knox, Stephanie James, Kirsten Chojnicki, Zack Cashion, Greg Cieslewski, David Chavira, Adam Foris, & Doug Blankenship

PNNL: Tim Johnson, Vince Vermeul & Chris Strickland

LBNL: Jonathan Ajo-Franklin, Craig Ulrich, Pierpaolo Marchesini, Yuxin Wu, Tom Daley, & Paul Cook

LLNL: Joseph Morris

NMBG: Alex Rinehart
Presentation Outline

• Benefits to the Program & Project Overview
• Technical Status:
 – Field site
 – Installation
 – Test Plan
 – Video Data
 – Seismic Results
 – Distributed Acoustic Sensing (DAS) Results
 – Constant Pressure Test Results
 – Real-time Electrical Resistance Tomographic (ERT) Results
 – Joint Inversions
 – Inversion For Fracture Conductivity
 – Automatic Picking Results
• Accomplishments to Date
• Synergy Opportunities
• Concluding Remarks
• Questions
• Appendix
Benefit to the Program

Problem Statement:
Real time methods of characterizing fracture networks and monitoring fracture flow are required to provide actionable feedback during stimulation, injection, and extraction operations.

Current Limitations:
1. Data may be insensitive to small-scale fractures that are important to system function.
2. Data collection and processing times limit temporal and spatial imaging resolution.
3. Important fracture attributes (e.g. permeability) are not routinely estimated.
Project Overview: Goals and Objectives

Demonstrate geophysical imaging technologies that will characterize:

1. **3D extent and distribution of fractures stimulated from two explosive sources**
2. **3D fluid transport within the stimulated fracture network through use of a particulate tracer**

These data will also be used to:

1. **Develop methods of estimating fracture attributes from seismic data**
2. **Develop methods of assimilating disparate and transient data sets to improve fracture network imaging resolution**
3. **Advance capabilities for near real-time inversion of cross-hole tomographic data**

<table>
<thead>
<tr>
<th>Subsurface Control for a Safe and Effective Energy Future</th>
<th>Adaptive Control of Subsurface Fractures and Fluid Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wellbore Integrity & Drilling Technologies</td>
<td>Subsurface Stress & Induced Seismicity</td>
</tr>
<tr>
<td>Improved well construction materials and techniques</td>
<td>Measurement of stress and induced seismicity</td>
</tr>
<tr>
<td>Autonomous completions for well integrity modeling</td>
<td>Manipulation of stress and induced seismicity</td>
</tr>
<tr>
<td>New diagnostics for wellbore integrity</td>
<td>Relating stress manipulation and induced seismicity to permeability</td>
</tr>
<tr>
<td>Remediation tools and technologies</td>
<td>Applied risk analysis of subsurface manipulation</td>
</tr>
<tr>
<td>Fit for purpose drilling and completion tools (e.g. anticipative drilling, controls, monitoring)</td>
<td></td>
</tr>
<tr>
<td>HT/HP well construction / completion technologies</td>
<td></td>
</tr>
</tbody>
</table>

Energy Field Observatories

Fit For Purpose Simulation Capabilities
Field Site:

- Blue Canyon Dome, atop Socorro Peak west of Socorro, NM
- Weathered Rhyolite 0-30 ft below ground surface (bgs); Unweathered Rhyolite > 30 ft bgs
- 1 stimulation borehole (70 ft deep) surrounded by 4 monitoring boreholes (75 ft deep)
Installation - Fall 2015

Tremie Pipe
ERT Sensor
Fiber Optic Cable
ERT Installation
Fiber Loop & Deepest ERT Sensor
Field Campaign – April 2016

Seismic

- Angled CT (Logging)
- Campaign Seismic ML-CASSM
- Energetic Stimulation #1
- Continuous 4D ML-CASSM
- Pressure Tests & ZVI Injection #1
- Energetic Stimulation #2
- Pressure Tests & ZVI Injection #2
- Continuous 4D ERT
- Angled CT (Logging)
- Campaign Seismic ML-CASSM
- 3D ERT Baseline + 2 GPR baseline cross sections
- Active & Passive Recording
- 3D ERT + 2 GPR cross sections
Field Campaign
April 2016
Gantt Chart
Energetic Stimulation #2
Downhole Camera Footage

- Camera data is from post energetic stimulation #2
- Camera is located 50.0 ft below ground surface (bgs)
- Shot depths in both cases were 58-65 ft bgs
- Two near vertical fractures are visible
- Close examination appears to show that the fractures are self propped
- Along other sections of the borehole, more than 2 fractures were visible
Seismic Tomography

Acquisition
- 9 different vertical source-receiver offsets for each tube pair (0°, 15°, -15°, 30°, -30°, 45°, -45°, 60°, and -60°)
- Acquisition time for each one of these tests is only about 6.5 hours
- 1 week to pick the data and 2 days to perform the inversion.
- Each tomogram is constructed using approximately 25,000 picks over the 8x8x35 foot (2.44x2.44x10.7 m) volume.

Observations
- Big changes in coda
- Coherent (in depth) changes in arrival time
- Initial tomogram (pre-shot) shows similar structure to ERT
ML-CASSM

- **Goal**: map fracture time evolution & effects of fluid pressure
- Largest ML-CASSM system deployment to date (22 S x 72 R)
- Data recorded before/after fractures + continuously during pump tests & zvi injection
- System active for 1.5 weeks, recorded 55,000 gathers ~ 2000 tomographic datasets
- Challenges included: high wind noise levels, power instability, cable issues
ML-CASSM Data: Fracture Impact

West to North, source at ~21 m

Observations

- Baseline, excellent bandwidth (signal to 10 kHz and beyond)
- Fracturing induced significant attenuation change (visible in A & f)
- Higher order resonances of source particularly attenuated.
- Only small change in P-phase (velocity reduction)
- Big changes in coda
Distributed Acoustic Sensing (DAS) – Shot #1 Data Example

(Left) Gather after despiking, bandpass (top end at 50 khz), and trace balancing. Left is a large subset (700 traces) right is a zoom around first break in one of the wells. Data is temporally aliased.

(Right) Top: raw trace; Middle: after despiking and filtering; Bottom: amplitude spectrum
DAS - Seismic Interferometry

1. Cross-correlate ambient noise recordings between channels
2. Stack to increase signal-to-noise ratio
3. Measure relative velocity variations \((dv/v)\) based on delay in phase arrivals

\(\text{END GOAL} = \text{Detect temporal and spatial changes in seismic velocity}\)
Constant-Rate Injection Testing

• Analysis of pressure falloff data section for quantitative estimates of hydraulic conductivity (K)
• Comparison of successive tests provides a measure of change in K associated with stimulations
• Agarwal (1980) time transformation applied to allow analysis of pressure falloff response using standard analytical well-function models
• Pressure falloff data fit to a vertical fracture model (Gringarten and Witherspoon, 1972)
• Difference in hydraulic response for three borehole conditions tested was readily apparent
Constant–Rate Injection Test Analysis

- Fit of pressure and pressure derivative (diagnostic) data to a vertical fracture model

<table>
<thead>
<tr>
<th>Hydraulic Conductivity (ft/d)</th>
<th>Permeability (md)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>7E-5 to 3E-9</td>
</tr>
<tr>
<td></td>
<td>(book value range)</td>
</tr>
<tr>
<td>Post-Shot #1</td>
<td>0.087</td>
</tr>
<tr>
<td></td>
<td>32</td>
</tr>
<tr>
<td>Post-Shot #2</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>92</td>
</tr>
</tbody>
</table>
Pre-fracture Baseline ERT Image

- Low electrical conductivity (EC) with high variability (2 orders of magnitude)
- Steeply dipping EC structure
- Highly resistive rock deep in the section (more competent?)
Real-time 4D imaging during ZVI injection

- Injection time: 3 hrs
- Injection vol: 110 gal
- Image frame rate: 15 min.

NOTES:
- Post detonation camera log shows multiple dominant vertical fractures.
- ZVI solution appears to migrate primarily into the east/west trending fracture.
- ZVI reaches outer boundaries of imaging zone, likely beyond...
Fly-around view of ZVI-filled fracture zone
Joint Inversion Development

- Enables ERT and Seismic/Radar data to be jointly inverted
- Leverages assumption that fractures induced changes in geophysical properties are co-located.
- Joint constraints significantly improve resolution.
- **Goal**: ‘Real-time’ joint inversion of large-N travel time and ERT data for fracture characterization and/or flow monitoring.

Algorithm Development
- Highly scalable parallel modeling/inversion
- Side by side forward simulations
- Unstructured tetrahedral mesh (finite element for ERT, fast marching method for travel time)
- Advanced a priori constraints
- Fresnel Volume Sensitivity
- Status: Complete (Simulated), Testing (Field)
Inversion for fracture conductivity

- Remote sensing of fractures
- How can we extract the most information? Permeability?
- Move beyond empirical rules
 - Self-consistent
 - Predictive

Pristine fracture Fracture containing precipitated pillars

Asperity i

Precipitated pillar

Aperture distribution (m)

Normal stress/compliance index

M_i^1 M_i^2 M_i^1
Our approach: Improvements that deliver results early and can be extended to a next-generation capability

- **Current effort:** Apply a modified version of Sayers and den Boer (2012) workflow
 - Utilize latest models coupling geophysics-mechanics and conductivity (Morris et al., 2016)

- **Future:** Introduce additional self-consistent fracture models to develop a next-generation workflow:
 - Predictive – Different geological settings
 - Extensible – Different geophysical attributes
Automatic Picking Results

- The automatic first arrival time estimates are mostly reliable.

- Misestimated first arrival times are identifiable by their large changes in velocity from their neighbors.

- S-wave arrivals are more problematic, but, for low angle offsets and in undamaged rock, the estimates provide a meaningful constraint to the velocity structure of the rock.

- The amount of time required to perform the analysis is short (less than 10 s for 120 traces).
Accomplishments to Date

- **Demonstrated:**
 - Successful multi-organizational (FFRDC, private industry, and academia) scientific collaboration and field execution
 - High resolution (spatial and temporal) geophysical imaging
 - Real-time imaging of fracture generation and tracer migration
 - Dense multi-disciplinary data acquisition

- **Developed and/or Improved:**
 - Joint inversion of geophysical data
 - Inversion for fracture conductivity
 - Automatic picking of high frequency seismic data
 - 3D change detection imaging using DAS technology
Synergy Opportunities

Wellbore Integrity
- LANL: Novel 3D Acoustic Borehole Integrity Monitoring System
 - SNL, ORNL, NETL
- ORNL: Ultrasonic Phased Arrays and Interactive Reflectivity Tomography
 - LANL, Purdue Univ., SNL

Subsurface Stress/Induced Seismicity
- SNL: Imaging Fracture Networks
 - LLNL, LBNL, PNNL

Permeability Manipulation

New Subsurface Signals
- LBNL: Intermediate-Scale Hydraulic Fracture and Stimulation (SURF)
 - INL, \(^1\)WGSS, \(^2\)SDSMT
 - LANL, PNNL, LLNL, NETL

Funded collaborations
Unfunded collaborations

\(^1\) WGSS: University of Wisconsin, Golder Associates, Stanford University, SNL
\(^2\) SDSMT: South Dakota School of Mines & Technology
Questions?

National Lab Team
April 2016 Fracture Test
Publications & Presentations

