

Additive Manufacturing of Smart Parts with Embedded Sensors for In-Situ Monitoring in Advanced Energy Systems

DE-FE0012272

Investigators:

Hai-Lung Tsai (PI), Ming Leu, Missouri S&T Hai Xiao, Clemson University Junhang Dong, University of Cincinnati

Program Manager: Richard Dunst, NETL

NETL Crosscutting Technology Research Review Meeting, Pittsburgh, PA, April 19, 2016

Outline

- Introduction
- Technical Progresses
- Summary of Research Accomplishments
- Future Work

- Sensors and instrumentation are needed in advanced energy systems for
 - Advanced process control/optimization
 - Health status monitoring of key components
 - System maintenance and lifecycle management
- Sensors need to survive and operate in the high-T, high-P and corrosive/erosive harsh environments for a long time

- Traditionally, sensors are attached to or installed onto the component after the structure is fabricated
- Costly and complicated sensor packaging are required before installation
- Poor survivability and reliability of the sensors
- Discrepancy between the sensor reading and the actual status
- Potential performance compromise of the host materials/structures

- Smart parts widely used and proven successful in civil engineering for structural health monitoring (SHM)
- Provide the real-time information of the component and system
- Reduce the complexity in sensor packaging and installation
- Increase the robustness and reliability of the system

 Main Objective: Demonstrate the new concept of sensorintegrated "smart part" achieved by additive manufacturing and embedding microwave-photonic sensors into critical components used in advanced energy systems

Specific objectives

- Robust, distributed and embeddable microwave photonic sensors
- Additive manufacturing techniques for rapid fabrication of "smart parts" and sensors embedment
- Multifunctional transition layer between the embedded sensor and host material for sensor protection and performance enhancement
- Models to correlate the sensor readings with the parameters of interest
- Sensor instrumentation for *in situ* and distributed measurement
- Feasibility tests and performance evaluation

- Performers: Missouri S&T, Clemson, University of Cincinnati
 - Three-year project started on Oct. 1, 2013

Interdisciplinary team

- Hai-Lung Tsai (PI), Professor of Mechanical Engineering, Missouri S&T, Modeling and AM of metal parts
- Ming Leu, Professor of Mechanical Engineering, Missouri S&T, AM of ceramic parts
- Hai Xiao, Professor of Electrical Engineering, Clemson University, Sensors and Instrumentation, test and evaluation
- Junhang Dong, Professor of Chemical Engineering, University of Cincinnati, Sensor protections

• Success criteria:

- Demonstrate concept and capability in simulated laboratory environments

Development of robust, distributed and embeddable sensors and instrumentation

Approach: Fully distributed microwave photonic fused silica and sapphire fiber sensors

> Hai Xiao Clemson University

Microwave-Photonics Sensors

- Optical carrier based microwave interferometry (OCMI)
 - Read optical interferometers using microwave
 - Optics as the carrier to perform measurement
 - Microwave as the signal to locate the sensors

J. Huang, et al., *Optics Express*, 2014.

OCMI Concept

- Michelson interferometer using multimode fibers (fused silica core of 200µm in diameter, 220µm cladding)
- Excellent fringe visibility
- No observable multimodal influences

- High sensitivity for strain sensing (~10με) at 600°C
- Small temperature cross sensitivity

Quartz rod (800μm dia. Uncladded) 🧗

Sapphire Michelson Sensor (125 µm)

Sapphire fiber Michelson OCMI

Excellent fringe visibility > 30dB

J. Huang, et al., IEEE Photonics Technology Letters, 2015.

Fully distributed sensing

- Spatially continuous (no dark zone), fully distributed sensing.
- High spatial resolution (<1cm)
- High sensitivity (~με)
- Flexible gauge length (1cm 100m)
- Long reaching distance (~km)
- Can be implemented using various fibers including sapphire and quartz rods
 - J. Huang, et al., Optics Express, 2014.

Develop a multifunctional transition layer between the embedded sensor and the host material for sensor protection

Approach: Design and select ceramic and metal materials based on structural and chemical potteries

Interface Thermochemical Stability in the Layered Structure for Sensor Protection/Installation

Solid-Solid Connections: *MgAl*₂O₄ / *Silicalite/Stainless-steel three-layer structure*

Interface Stability: Stable at 750°C; stability at higher temperature is yet to be tested

UNIVERSITY OF

Cincinnati

Lsec: 7.8 0 Cnts 0.000 keV Det: Octane Super Det

Multilayer-Protected FOS Fabrication Cincinnati

Structure: (*Zirconia*)/(α-alumina)/(silica optical fiber)

Fabrication: inserting optical fiber into zirconia small tube by alumina adhesives

Stability: Fiber strongly attached to structure after thermal cycles; tested stability at 750°C

Long-Term Stability of Sapphire Protection

• The structures of silicalite-coated-sapphire is stable after firing at 1000°C for 200 h according to SEM and EDS examinations – No structural damage or elemental diffusion across the Silicalite/Sapphire interface was found.

Long-Term Stability of Sapphire Multilayer Protection

The structures of silicalite-coated-sapphire with an overcoats of ZAlMg ($ZrO_2-Al_2O_3$ -MgO mixture) and ADZ ($Zr_{1-0.75x}Al_xSiO_4$) are both stable after firing at **1000°C for 200 h** according to SEM and EDS examinations – No structural damage or inter-layer element diffusion was found.

ZrZr 0.00 8.0 10.0 12.0 4.0 14.0 180 0.0 Lsec: 30.0 0 Cnts 0.000 keV Det: Octane Super Det 8.55K 7.60K 6.65K 5.70K 4.75K 3.80K 2.85K Sapphire 1.90K 0.95K 0.00K 4.0 6.0 2.0 0.0 Lsec: 30.0 0 Cnts 0.000 keV Det: Octane Super Det 6.03K 5.36K 4.69K 4.02K

UNIVERSITY OF

Cincinnati

Lsec: 30.0 0 Cnts 0.000 keV Det: Octane Super Det

4.14K

3.22K

2.30K

1.38K

Lsec: 30.0 0 Cnts 0.000 keV Det: Octane Super Det

Additive Manufacturing of Liner Blocks (Ceramic) with Embedded Sensors

Approach: Multi-extruder freeze-form extrusion based additive manufacturing

Ming Leu Missouri University of Science and Technology

Novel AM Process

- $\circ\,$ A layer is deposited through a moving nozzle.
- o Oil is pumped to surround the layer.
- o Infrared lamp is used to partially dry the layer.
- Next layer is deposited.

Tool-path Planning Software

- An algorithm has been developed and coded into computer software to
 - Read the geometry of the part in STL format.
 - o Slice the part.
 - Generate tool-path for each layer.
 - Generate a G&M code for output to a manufacturing machine for part fabrication by 3D printing.

 $M{\scriptstyle \textsc{issouri}}\ U{\scriptstyle \textsc{issouri}}\ Of\ S{\scriptstyle \textsc{ience}}\ \text{and}\ T{\scriptstyle \textsc{issouri}}\ V{\scriptstyle \textsc{issouri}}$

Example Printed Parts

Mechanical Properties Measured

- Relative density (Archimedes'): 98%
- $\circ\,$ Flexural strength (ASTM C1161 four-point bend): $364\pm50\,$ MPa
- \circ Young's modulus: 390 ± 21 GPa
- \circ Fracture toughness (ASTM C1412 chevronnotched beam, configuration A): 4.5 ± 0.1 MPa.m0.5
- \circ Hardness (ASTM C1327 Vickers indentation test): 19.8 ± 0.6 GPa

Microstructure Evaluation

- Microstructure was observed under SEM
- o Grains are highly packed
- Average grain size
 based on lineal
 intercept: 2.1 μm

Fiber Embedment

- $\circ\,$ Sapphire fibers of 75, 125 and 250 μm diameter were successfully embedded in the aluminum parts
- A signal was passed through the fibers to ensure that the embedded fibers are not damaged

Fiber Embedment

Micrographs of the embedded fibers show good mechanical bonding between fiber and part

Additive Manufacturing of Pipe (Metal) with Embedded Sensors

Approach: Foil-Based Dual-Laser Additive Manufacturing Technology

Hai-Lung Tsai Missouri University of Science and Technology

Foil-Based AM System Setup

• System Design, Hardware and Software Implementations, and Integration.

As-Fabricated Samples

Laser Welding

- (a) Surface morphology of the raster-scan weld;
- (b) Cross-section of a single-line laser foil-welding onto a substrate;
- (c) Cross-section of the raster-scan weld of one-layer foil onto a substrate;
- (d) Cross-section of a multi-layer rasterscan weld

Laser Surface Polishing - Modeling

Simulation of the thermal and melt flow processes of laser polishing for a hemispherical bump on a flat substrate.

Laser Surface Polishing - Experiment

The surface roughness can be significantly reduced from about 20 μm to less than 3 μm

Top surface of laser polishing

Cross-section of laser polishing

Sensor-Embedded Parts Fabrication

3D models for sensor embedding.

Curved sensors to be embedded in the printing process.

Sensors are embedded in the parts.

University of Science & Technology

IIM system under construction

Helical structure inside fiber

Fs laser inscribed FBGs

Fiber inline waveplate

- The polarization status can be flexibly changed by fs laser induced stress patterns inside the fiber
- Waveplates of any desired phase retardance can be fabricated in a SMF L. Yuan, et al., *Optics Express*, 2016.

Fiber inline polarizer

- Fs laser inscribed periodic stress patterns near the core of a single mode fiber
- Polarization dependent corecladding mode coupling result in an inline polarizer
- Fiber polarizers can be fabricated anywhere we want

<u>CLEMSON</u>Diaphragm based ultrasonic sensor P

Endface diaphragm based acoustic sensor

Cantilevers

- Microwave photonic sensors and instrumentation have been developed and proven effective
- Protective coating materials have been identified and successfully coated on silica and sapphire
- Additive Manufacturing techniques have been developed for fabrication of smart parts
 - □ Multi-extruder freeze-form extrusion for ceramic parts
 - □ Foil-Based Dual-Laser Additive Manufacturing for metals
 - □ Information integrative smart manufacturing system

Models have been developed to study the induced stress/strain on the sensor caused by external high pressures or high temperatures

Continue optimization and improvement on

- Sensors: stability, loss sensitivity, temperature cross sensitivity, protection, embedment
- Additive manufacturing techniques and processes
 - Ceramic: sintering, new materials, functionally gradient, mechanical tests
 - Metal: surface improvement, 3D metal parts
- Modeling: temperature and pressure coupled models
- Protective coating: multilayer structure and coating on real sensors
- Test embedded sensors in smart parts
- Making sensors while making the parts
- Initial tests of sensors embedded in the smart parts

