

Prediction of auto-ignition regimes in turbulent reacting flows with thermal inhomogeneities

<u>Pinaki Pal¹</u>, Hong G. Im², Margaret S. Wooldridge¹

¹Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan. ²Clean Combustion Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.

Introduction

Both strong (homogeneous) weak (inhomogeneous) and ignition regimes have been observed experimental in studies [1]. Occurrence of weak ignition was found to significant result in advancement of ignition delay. The strong ignition limit was well predicted in laminar flows by the a priori Sankaran

Figure 1: Strong and weak ignition regimes [1]

Regime Diagram Validation: DNS Study

Table 1: 2D syngas/air DNS parametric cases: $P_0 = 20$ atm, $\phi = 0.5$, H_2 : CO = 0.7:1 (molar)

Case	<i>T</i> ₀ (K)	$ au_{ig}$ (ms)	T' (K)	K^2	(mm)	u' (m/s)	$ au_\ell$ (ms)	Da _ℓ	Reℓ	Da _a	$rac{ au_{HRR_max}}{ au_{ig}}$
Α	990	25.77	15	4.05	4.3	0.05	86.0	3.34	35.24	1.02	50
В	1100	2.07	15	2.51	4.3	0.05	86.0	41.6	29.40	13.5	82
С	990	25.77	15	4.05	4.3	1.50	2.87	0.11	1057.4	0.01	93
D	1100	2.07	15	2.51	6.0	0.2	30	14.5	164	2.65	87
Е	990	25.77	15	4.05	6.0	0.2	30	1.16	197	0.2	55
F	970	41.26	15	4.41	6.0	0.05	120	2.91	50	0.8	56
G	1020	12.7	15	3.28	4.0	0.3	13.33	1.05	185	0.2	57

- Periodic boundary conditions on all sides.

criterion [2].

Objective: To extend the Sankaran criterion to account the effects of turbulent for fluctuations and validate the turbulent ignition criteria.

Figure 2: Front Damkohler and Sankaran numbers versus mean temperature for syngas-air mixture [2]

Turbulent Ignition Regime Prediction

Da

- Passot-Pouquet kinetic energy spectrum employed.
- Uncorrelated temperature and velocity fields.
- Hot spot superimposed on the random T field at the center of the domain.
- Detailed kinetic chemical with 12 mechanism for syngas species and 33 reactions.

Results and Discussion

Turbulent Ignition Regime Diagram

 $Da_{\ell} > K^2$: Reaction-dominant strong ignition $1 < Da_{\ell} < K^2$, $Da_{\lambda} > 1$: Weak ignition $Da_{\lambda} < 1, Da_{\ell} > 1$: Mixing-dominant mixed/strong ignition Figure 4: Temperature fields at 50% heat release rate: (a) case A (weak), (b) case B (reactioncontrolled strong) and (c) case C (mixing-controlled strong), (d) pressure traces for all cases. Case A ignites much earlier due to enhanced compression heating effect of the propagating deflagrative fronts, whereas cases B and C show no appreciable flame propagation and auto-ignite nearly homogeneously at nearly the corresponding homogeneous ignition delay timings.

Conclusions

□ In the present work, a non-dimensional scaling analysis is performed based on the homogeneous theory of turbulence to derive various criteria to predict strong and weak ignition regimes.

□ The ignition regime criteria are further validated against 2D direct numerical simulations (DNS) of auto-ignition of a lean syngas-air mixture.

Acknowledgements

US DOE NETL award number DE-FE0007465 and KAUST.

References

A. Mansfield, M. Wooldridge, Combust. Flame 161 (2014) 2242-2251.

D P. Pal, A. Mansfield, P.G. Arias, M. Wooldridge, H.G. Im, *Combust.*

