High-Temperature Sapphire Pressure Sensors for Harsh Environments

David Mills1, Daniel Blood1,3, Harman Singh Bal2, Peter Woerner2, William Oates2, Mark Sheplak1

1Interdisciplinary Microsystems Group, University of Florida
2Florida State University
3Valparaiso University

DE-FE0012370

2015 NETL Crosscutting Research Review Meeting
April 30, 2015
Outline

• Introduction
• Approach
• Proof-of-Concept Device
• Objectives
• Ultrashort Pulse Laser Micromachining
• Laser Ablation Modeling
• Conclusions
Project Overview

• Focus: Development of novel fabrication methods for the synthesis of high-temperature sapphire optical pressure sensors

• Award information
 – Project title: “High-temperature sapphire pressure sensors for harsh environments”
 – Award #: DE-FE0012370
 – Program manager: Sydni Credle
 – Duration: 3 years, beginning Jan 2014

• Project team
 – UF (Project lead)
 – FSU
Motivation

• Development and implementation of advanced energy systems will require novel harsh environment sensors and instrumentation for:
 – Advanced process control/closed loop feedback systems
 – Increased efficiency
 – Reduced emissions & cost

• Applications
 – Coal gasification
 – Advanced gas turbine systems
 – Solid oxide fuel cells
 – Deep oil and geothermal drilling
Motivation

• Sensor operational requirements
 – Temperature: >1000°C
 – Dynamic pressure: up to 1000 psi
 – Atmosphere: corrosive and/or erosive

• Conventional pressure sensor instrumentation is limited to ~500°C

• Temperature mitigation techniques:
 – Stand-off tubes - cause signal attenuation and degradation
 – Water cooling - imparts unknown aerothermal effects on the surrounding flow
Approach

- Transduction mechanisms
 - Capacitive
 - Optical
 - Piezoelectric
 - Piezoresistive

- Benefits of fiber optic transduction
 - DC measurement
 - Immunity to EMI
 - Passive
 - Non-conductive
 - Remote electronics
 - Multiplexing
Approach

- Sensor/optical fiber materials
 - Silicon
 - Silica
 - Silicon carbide
 - Sapphire
 - Diamond

- Benefits of sapphire
 - High melting point (2053°C)
 - Resistance to chemical corrosion
 - Excellent hardness
 - Large transmission window (200 nm – 5 μm)
 - Multimode optical fibers & substrates available
Approach

- Common fiber optic measurement techniques
 - Phase modulation – interferometer
 - High sensitivity
 - Environmental sensitivity
 - Coherent source
 - Single mode fibers

 - Intensity modulation – optical lever
 - Less sensitive to environmental changes
 - Incoherent source
 - Single or multimode fibers
 - Relaxed fabrication/packaging tolerances
 - Multiple send/receive configurations
Proof-of-Concept Device

- **Diaphragm**
 - 8 mm diameter, 50 μm thick
 - Platinum reflective surface
 - Thermocompression bonded to back cavity

- **Configuration**
 - Single send/receive fiber
 - Sapphire/silica fiber connection
 - Reference photodiode

Proof-of-Concept Device

• Performance issues
 – High stiffness – low sensitivity
 – Large residual stress (~300 MPa) resulted in buckled diaphragm

• Improvements
 – Sensitivity – utilize ultrashort pulse laser micromachining to fabricate thinner diaphragm structures
 – Residual stress – improve thermocompression bond process through additional testing and characterization of bond interface
Technical Objectives

• Implement novel sapphire fabrication processes for fabrication of 3-dimensional structures
 – Subtractive machining: ultrashort pulse laser micromachining
 – Additive manufacturing: thermocompression bonding via spark plasma sintering (SPS) technology

• Characterize and mitigate thermo-mechanical damage imparted by manufacturing processes via statistical modeling of laser pulse-material interactions

• Fabricate, package, calibrate, and demonstrate in the field a high-temperature sapphire dynamic pressure capable of operation up to 1000°C and 1000 psi
Technical Objectives

• Phase I
 – Laser machining process development
 – SPS thermocompression bonding process development
 – Laser machining thermal damage modeling & analysis

• Phase II
 – Sensor design & fabrication
 – High-temperature packaging

• Phase III
 – Room- and high-temperature characterization
 – Hot jet testing
Outline

• Introduction
• Approach
• Proof-of-Concept Device
• Objectives
• Ultrashort Pulse Laser Micromachining
• Laser Ablation Modeling
• Conclusions
Pulsed Laser Micromachining

- Ultrashort pulse laser micromachining
 - Classification based on relation between thermal diffusion depth, \(d \), and optical penetration depth, \(\delta \)

 \[
 d = 2\sqrt{at} \quad \delta = \frac{2}{\alpha}
 \]

 - \(d < \delta \), material removal is dominated by photochemical processes and is considered ultrashort
Pulsed Laser Micromachining

- **Oxford Lasers Micromachining Station**
 - Laser: Coherent Talisker Ultra (DPSS)
 - Pulse duration: 10-15 ps nominally
 - Wavelength: 355 nm
 - Beam diameter: 8.8 µm
 - Max output: 4 W at laser head (20 µJ pulse energy)
 - Beam attenuator from 0 -100%
 - Pulse frequency: up to 200 kHz

- **For sapphire,**
 \[\delta \approx 72.4 \, \text{µm} \]
 \[d \approx 24.4 \, \text{nm} \]
 10ps pulse is considered ultrashort
Pulsed Laser Micromachining

- Four key machining parameters of interest:

1. Pulse Spacing (µm)
2. Pulse Repetition Rate (Hz)
3. Pulse Fluence (J/cm²)
4. Cut Passes – Number of times the cut path is repeated
Gentle vs. Strong Ablation

- Transition from gentle to strong ablation is dependent on the number of laser pulses in a given area and the laser fluence.
- Machining parameters:
 - Feature size: 400 μm x 250 μm
 - Laser fluence: 1.2 – 21.5 J/cm²
 - Number of passes: 1-50
- Linear fits to gentle (blue) and strong (red) ablation regimes.
- Threshold laser fluence: ~1 J/cm²
Gentle vs. Strong Ablation

5 Passes

Average Cut Volume Per Pulse (μm^3) vs. Average Fluence (J/cm2)

- 10 μm Spacing
- 7.5 μm Spacing
- 5 μm Spacing
- 2.5 μm Spacing
- 2 μm Spacing
- 1.5 μm Spacing
- 1.25 μm Spacing
- 1 μm Spacing
- 0.75 μm Spacing
- 0.5 μm Spacing
Sidewall Angle

- Machining parameters
 - Fluence: 5.1-25.5 J/cm²
 - Pulse area overlap: 45-99%
 - Number of passes: 50-2000

- Sidewall angle is constant above ~75% pulse area overlap

- Higher fluence and number of passes reduce sidewall angle
Laser Machining Simulation

- **User inputs**
 - Cut program (G code)
 - Process parameters
 - Laser station settings

- **Program outputs**
 - Results table
 - 2D and 3D simulated depth of cut plots
 - 2D velocity plot
 - Input feedrate vs machining time plot

Input Process Parameters:
- Feed rate
- Pulse frequency
- Measured average power
- Attenuation
- Material
- Number of passes
- Focal distance
- Workpiece thickness
- Mesh size

Input Laser Station Settings:
- Acceleration profile type
- Jerk rate (if applicable)
- Acceleration rate
- Beam radius
- Laser power consumption
- Electricity rate
- Operator hourly cost
- Machine hourly cost

- **Start**
 - Generate Cut Program
 - Load Cut Program
 - Measure Average Laser Power

Laser Station Settings Correct?
- No
- Yes

Run Simulation
Laser Machining Simulation

Input file

Machining parameters

Process modification

Simulation outputs

<table>
<thead>
<tr>
<th>Filenem</th>
<th>select file</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected Filename</td>
<td>verification_square.pgm</td>
</tr>
<tr>
<td>Feed (mm/s)</td>
<td>10</td>
</tr>
<tr>
<td>Frequency (Hz)</td>
<td>56000</td>
</tr>
<tr>
<td>Measured Power (W)</td>
<td>2.84</td>
</tr>
<tr>
<td>Power (%)</td>
<td>6.5</td>
</tr>
<tr>
<td>Material</td>
<td>Sapphire</td>
</tr>
<tr>
<td>Number of Passes</td>
<td>11</td>
</tr>
<tr>
<td>Initial Z Height (um)</td>
<td>0</td>
</tr>
<tr>
<td>Wafer Thickness (um)</td>
<td>550</td>
</tr>
<tr>
<td>Mesh Size (um)</td>
<td>0.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modification Method</th>
<th>Depth + Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut Type</td>
<td>Pocket</td>
</tr>
<tr>
<td>Modification Strategy</td>
<td>Speed</td>
</tr>
<tr>
<td>Desired Cut Depth (um)</td>
<td>30</td>
</tr>
<tr>
<td>Tolerance (%)</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Last Program</th>
<th>Current Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time To Machine (s)</td>
<td>2.03e+000</td>
</tr>
<tr>
<td>Laser On Time (s)</td>
<td>1.36e+000</td>
</tr>
<tr>
<td>Energy Consumed (W/end)</td>
<td>2.60e-003</td>
</tr>
<tr>
<td>Cost of Cut ($)</td>
<td>2.85e-002</td>
</tr>
<tr>
<td>Pulse Area Overlap (%)</td>
<td>85.8</td>
</tr>
<tr>
<td>Max Realizable Feed</td>
<td>200</td>
</tr>
<tr>
<td>Max Depth of Cut (um)</td>
<td>1.12e+001</td>
</tr>
<tr>
<td>Avg Depth of Cut (um)</td>
<td>7.79e+000</td>
</tr>
<tr>
<td>Min Depth of Cut (um)</td>
<td>5.22e+000</td>
</tr>
</tbody>
</table>
Part Path Modification

- Test geometry – overlapping rectangles
 - Creates deeper machined region
 - Goal: add passes in specific areas to create a single region of consistent depth
Part Path Modification Results

- Additional passes in region of single overlap improves the depth uniformity
- Good agreement with simulation including capture of periodic structures in the machined recess

![Simulated and Measured Plots](chart.png)
Outline

- Introduction
- Approach
- Proof-of-Concept Device
- Objectives
- Ultrashort Pulse Laser Micromachining
- Laser Ablation Modeling
- Conclusions
Laser Ablation Modeling

- Material physics modeling of laser ablation
 1. Laser input: time dependent Maxwell’s equations
 2. Material evolution: electronic structure balance equation

\[
L = L_F + L_I + L_M
\]

Lagrangian energy formulation

Energy losses to ablation

\[
\Pi_D = -\sum_{\alpha} \frac{1}{2} \beta^\alpha \dot{y}^\alpha_i \dot{y}^\alpha_i
\]

\[y^\alpha_i\] --vector order parameters \((\alpha=1,\ldots,n)\) defining homogenized electronic structure

Laser Ablation Modeling

- One dimensional model approximation
 - Scalar order parameter governing electron density
 \[\rho(x, t) = \sum_{\alpha} \sqrt{y_i^\alpha (x, t) y_i^\alpha (x, t)} \]
 - Balance law governing \(\rho(x, t) \) obtained from minimization of energy functions
 - Leads to a phase field or sharp interface model driven by electric field (laser) pulses

- Key governing equations
 \[
 \sigma(\rho) \mu_0 \frac{\partial E}{\partial t} = \nabla^2 E
 \\
 \beta(E) \frac{\partial \rho}{\partial t} = a_0 \nabla^2 \rho - \frac{\partial \psi}{\partial \rho} - \gamma(E)
 \]
 Electromagnetic equation
 Phase field based order parameter model
 Multi-well energy
Model Validation

- Ablation of material predicted as a function of picosecond pulsed laser excitation
- Laser intensity dependence model parameters identified via Bayesian statistics

Model Analysis – Parameter Sensitivity

Electromagnetic equation

\[\sigma(\rho) \mu_0 \frac{\partial E}{\partial t} = \nabla^2 E \]

Phase field based order parameter model

\[\beta(E) \frac{\partial \rho}{\partial t} = a_0 \nabla^2 \rho - \frac{\partial \psi}{\partial \rho} - \gamma(E) \]

• Critical parameters considered

\[\sigma(\rho) = \sigma(\rho; \sigma_1, \sigma_2) \]

Electric conductivity:
- \(\sigma_1 \) (room temperature)
- \(\sigma_2 \) (excited state)

\[\beta(E) \]

Inverse electronic mobility parameter

Region of finite machined depth giving potentially valid numerical correlation with laser ablation experiments
Bayesian statistics applied to quantify reduced order model uncertainty

- Kinetic parameter (β) found to increase approximately linearly with picosecond pulsed laser intensity
- Illustrated in terms of the probability of β given a machined depth d

Outline

• Introduction
• Approach
• Proof-of-Concept Device
• Objectives
• Ultrashort Pulse Laser Micromachining
• Laser Ablation Modeling
• Conclusions
Summary

• Laser machining process for the sapphire-UF laser system characterized

• Simulator developed and validated based on empirical data

• Laser ablation model developed
 – Coupling among laser excitation and electronic structure evolution
 – Uncertainty and sensitivity analysis conducted on a reduced order model approximation
 – Parameter dependence on laser intensity identified
Future Work

- Quantification of laser damage via four point bend testing at elevated temperatures
- Extension of the laser ablation model to include effects of sub-surface laser damage on strength and fracture
- Fabricate high-temperature plane wave tube for dynamic pressure calibration
- Sensor fabrication
- High-temperature package development
- Packaged sensor calibration & hot jet testing
Questions?