Passive Pyroelectric Ceramic Temperature sensors

Ricardo Martinez

Department of Mechanical Engineering University of Texas at El Paso

Grant: FE0011235,HBCU/MI Project Manager: Richard Dunst Co-PI: Norman Love, Ph.D. PI: Yirong Lin, Ph.D.

Agenda

- □ Introduction and Background
- Objectives
- Technical Approach
- Results
- □ Summary
- **Given Work**

□ Temperature sensing is critical in modern power plants and energy systems

- Higher efficiencies in energy conversion
- Lower emission for near-zero emission power plants
- Enhanced material systems safety

Project Goal

Design, fabricate, and demonstrate a *low cost self-powered wireless* temperature sensor for energy system applications

Expectation

Provide a complete set of documentation for sensor manufacturing, testing and characterization

Benefit

Energy conversion areas where continuous temperature monitoring required to achieve higher performance

Coal-Gasification Power Plant

Gas Turbine

Oxy Fuel Combustion

Overview and Rationale

□ Wired temperature sensors

- High cost materials required (Sapphire, laser)
- Complicated sensing systems lead to high cost and maintenance
- Typically require special coupling connection

□ Wireless temperature sensors

- Require built-in electronics
- High temperature limitation
- Complicated sensor design

Background

- Pyroelectric material is heated
 - Spontaneous polarization reduced through reduction of dipole moment
 - Quantity of bound charges at the electrodes decreases
 - This subsequent redistribution of charges results current flow through the external circuit
- Pyroelectric material is cooled
 - Spontaneous polarization increased
 - Current sign is reversed

Background

Sensing of Magnetic Field

Hall Sensor

- A hall effect sensor is a 3 wired sensor with reference voltage, a ground and a signal terminal
- Hall effect sensor is a transducer that varies its output voltage in presence of magnetic field
- Current flowing through a conductor in magnetic field perpendicular to the current flow would generate voltage perpendicular to both current flow and magnetic field

Project Concept

- □ Low cost self-powered wireless temperature sensor
- Sensing mechanism is based on pyroelectric ceramic
- > Pyroelectric ceramic *generates current* upon temperature changes
- Generated current will be converted into *magnetic flux* by connecting the ceramic to an inductive coil and measured wirelessly by an *external receiving device*

9/32

Technical Approach

Sensing Method

The relation between magnetic flux and current can be described as below

$$T(f) = \frac{1}{pA} \int_{t_o}^{t_f} I dt + T(0)$$

$$\varphi = \frac{\mu_0 NIA}{w}$$

□ Sensing device and processing unit

- Left side: wireless signal (Current induced magnetic flux) generated by sensor
- Right side: External receiver (Hall sensor) and Data acquisition unit

- 1. Determination of appropriate pyroelectric ceramics
- 2. Construct the wireless sensor system and demonstrate the wireless temperature sensing capability
- 3. Development of temperature sensor using pyroelectric properties of Lithium Niobate
- 4. Determine the wireless sensing performance in energy systems

Technical Approach

Objective 1: Determination of appropriate pyroelectric ceramic

Pyroelectric materials include

- Crystal (Lithium Tantalate)
- Polymer (PVDF-Polyvinylidene Fluoride)
- Ceramic (Lithium Niobate)
- Biological materials
- Choice of pyroelectric materials depends on
 - Size & density
 - Availability and reliability
 - Maximum operation of temperature
 - Pyroelectric coefficient

Dimension (LiNbO ₃)	50.8×50.8 cm and 2 mm in thickness
Density	4.65 g/cm ³
Curie Temperature	1142.3±0.7° C
Dielectric Constant (@ 25º C (unclamped <500 KHz)	ε ₁₁ = 85, ε ₃₃ = 28.7
Pyroelectric Coefficient (@ 25° C)	-8.3×10⁻⁵ C/ºCm²
Piezoelectric Strain Coefficients	d ₁₂ = 69.2 d ₃₁ =0.85
(@25°C ×10 ⁻¹² C/N)	d ₂₂ =20.8
	d ₃₃ =6.0
Thermal Conductivity (@ 25° C)	10 ⁻² cal/cm.sec.ºC

Objective 2: *Construct the wireless sensor system* and demonstrate the wireless temperature sensing capability

5.0 mV/Gauss ratiometric linear analog commercial Hall sensor from Alegro Micro Systems

Technical Approach

Objective 2: Construct the wireless sensor system and *demonstrate the wireless temperature sensing capability*

Task

Magnetic Field Detection by Hall Effect Sensor

- Through Distances
- Through Material Blocks

Signal Loss with Various Materials

□ Current supplied to winded coil from external power supply

Signal Loss for Various Distances

□ Current supplied to winded coil from external power supply

Interpolation model for Hall sensor voltage output at 4 A and varying distance

Technical Approach

Objective 3: Development of temperature sensor using pyroelectric properties of Lithium Niobate

Technical Approach

Experimental Setup

Experimental Setup

Data Acquisition

Generated current by LiNbO₃ and rate of temperature change of thermocouple mounted on top of (a) 2 mm and (b) 1 mm thick LiNbO₃

Generated current by LiNbO₃ and temperature of thermocouple mounted on top of (a) 2 mm thick LiNbO₃ and (b) 1 mm thick LiNbO₃

Temperature measured by thermocouple and (a) 2 mm thick and (b) 1 mm thick LiNbO $_3$

Temperature measured by the thermocouple and 1 mm thick sandwich structured LiNbO₃

Temperature measured by the thermocouple and 2mm LiNbO3 for extended time. Furnace was set at 100° C. They were separate and place inside the furnace at same time.

Temperature measured by the thermocouple and 2 mm thick $LiNbO_3$ for extended time with slow heating rate

Challenges

- Low Magnetic field generated in the inductor coil
- High temperature material for coating, adhesive and wiring

Probable solutions

- Increase the current generated by having a larger sample or stacking multiple samples together
- Design the inductor with higher number of loops, strong magnetic core to increase the magnetic field generated
- > Increase the sensitivity of the Hall sensor to detect low magnetic fields
- Research for commercially available high temperature adhesive, coating and wire materials

Wireless Sensing Approach

Highly sensitive Hall sensor (25mv/G)

High temperature adhesive and coating from Aremco (up to 1700 °F)

Conclusion

- A lithium niobate ceramic with high Curie temperature (1142 °C) material is selected
- Hall Effect sensor was constructed and tested to measure the magnetic flux remotely through various distances and through various materials
- 1 cm x 1 cm sample of lithium niobate material with two different thicknesses (1mm and 2 mm) were characterized in terms of current generation
- Measured current from lithium niobate is compared with the theoretical current. The comparison satisfies the definition of pyroelectricity
- Pyroelectric current from the lithium niobate ceramic material due its change of temperature is taken into consideration to calculate the sample temperature
 - maximum 8% and 6.7% differences was found for 2 mm and 1 mm thick sample respectively

Future Work

□A simple inductance-Hall Sensor based wireless sensing mechanism

Demonstrate effectiveness of wireless temperature sensing

Torch Testing

Combustion Rig

Acknowledgements

□ This research was performed with the support of the U. S. Department of Energy advanced fossil resource utilization research under the HBCU/MI program with grant number of **FE0011235**, Project Manager: **Richard Dunst**

Student Involvements

THANK YOU