Bench-Scale Development and Testing of Rapid PSA for CO₂ Capture James A. Ritter & The Team

2015 NETL CO₂ Capture Technology Meeting Pittsburgh, PA, June 25, 2015

Overall Project Objectives

- design, develop and demonstrate a bench-scale process for the efficient and cost effective separation of CO₂ from flue gas using Pressure Swing Adsorption (PSA)
- goal to reduce energy consumption, capital costs, and environmental burdens with novel PSA cycle/flow sheet designs
- applicable to both large (500-1000 MW) and small (5-50 MW) capacity power plants, and industries with 10 to 100 times less CO₂ production

Process simulations and experiments; structured adsorbent material development, CFDs and experiments; and complete flow sheet analyses being used for demonstrating and validating the concepts.

The Team

thin film materials development and characterization

specification

investigation

Grace (Ehrlich) Catacel (Cirjak)

USC (Ritter & Ebner)

materials characterization, and process modeling and experimentation

technology development and process integration Battelle (Saunders & Swickrath)

validation

Key PSA Technology Challenge

....to develop a structured adsorbent around an efficient PSA cycle that exhibits a high enough packing density to allow the fastest possible cycling rate (\rightarrow smallest possible beds), while improving pressure drop and mass transfer and eliminating attrition issues....

Where have we been?

USC Rapid PSA Process Flow Sheet*

Preliminary Technical and Economic Feasibility Study

Overall Outcome

Where are we now in Budget Period (BP) 2?

Significant Outcomes so far in BP 2

- developed test procedures for measuring effects of trace levels of both SO_x and NO_x on zeolites and silica gels; some *preliminary* results have been obtained
- completed start-up and trouble-shooting of 1-bed bench scale PSA apparatus; system now capable of mimicking all cycle steps of multi-bed PSA process
- completed *preliminary* CO₂-N₂ cycling with 3 mm zeolite beads in larger 1-bed bench scale PSA apparatus; results showing very good separation/recovery at reasonable throughput
- fabricated three, 6 inch Catacel cores coated with 50 µm thick layers of zeolite crystals, achieving 240 kg/m³ bed density; awaiting testing in larger 1-bed bench scale PSA system
- fabricated two, 6 inch Catacel cores, one uncoated and one coated with 50 µm thick layers of zeolite crystals; awaiting testing in VFR apparatus to determine mass transfer rates

Significant Outcomes so far in BP 2

- completed construction of multi-bed bench scale PSA apparatus; currently undergoing start-up, troubleshooting and testing with 3 mm zeolite beads
- developed parallel channel structured adsorbent pressure drop correlation (PD) for use in DAPS; currently being used with DAPS to simulate full scale PSA process
- completed CFD modeling showing when plug flow (packed bed) conditions prevail in parallel channel structured adsorbent (PCSA); simpler 1-D packed bed models can now be used to study PCSAs in DAPS with modified PD correlation
- completed first phase of CFD modeling, revealing use of slower 2-D and 3-D models to train much faster 1-D models; currently being used to determine optimum Catacel core structure

Equilibrium Adsorption Isotherms for CO₂ on 13X Zeolite

Effect of Exposure to 500 ppm of $SO_2 \text{ in } N_2 \text{ with}$ Subsequent T Regeneration

5% to 10% Decrease in Capacity Realized Especially at High Loadings

Working Capacity (wt%) of CO₂ on 13X Zeolite Effect of SO₂ and NO_x Exposure

sample exposed to 2.5 hr of 42 ppm of SO₂ in N₂ between sets of cycling tests – no regeneration

Working Capacity (wt%) of CO₂ on 13X Zeolite Effect of SO₂ and NO_x Exposure

Gas	Before	After	%	
	Exposure	Exposure	Decrease	
He*	7.05	5.87	16.7	
SO ₂ (42 ppm)	6.56	5.18	21.0	
SO ₂ (500 ppm)	6.88	5.66	17.7	
NO ₂ (74 ppm)	6.44	5.43	15.7	

 * only helium run, so sample not exposed to any SO₂ or NO_x – implies decrease in all cases, since similar, most likely due to trace H₂O vapor leaking into TGA

1-Bed PSA System Rapid Complex PSA Cycle Schedule Analysis

1-Bed PSA System Rapid Complex PSA Cycle Schedule Analysis

1-Bed PSA System Preliminary Results with Zeolite Beads

Fwn	Feed	Cycle	Feed
Exp	Flow Rate	Time	Throughput
110.	[SLPM]	[sec]	[L(STP)/hr/kg]
1	12.97	720	351.60
2	14.26	720	386.55
3	7.13	1440	193.32
4	7.85	1440	212.67

15 vol% CO₂ in N₂ Fed at 120 kPa with Column at 70 °C and Regeneration by Vacuum with $P_{low} = 5 \text{ kPa}$

Exp No.	HP CO ₂ Pur (%)	HP CO ₂ Rec (%)	LP N ₂ Pur (%)	LP N ₂ Rec (%)
1	88.31	92.16	98.18	96.53
2	89.82	89.98	97.40	97.42
3	88.50	94.50	98.4 6	97.50
4	89.37	93.08	98.18	97.35

4-Bed PSA System Suitable for Power Plant Demonstration

4-Bed PSA System Suitable for Power Plant Demonstration

4-Bed PSA System Suitable for Power Plant Demonstration

Volumetric Frequency Response Apparatus

Comparison of Mass Transfer Coefficients N₂ and CO₂ on 13X Zeolite Beads at 25 °C

	k s ⁻¹		
	VFR	1-Bed RPSA	
CO ₂	3.3	7.5	
N ₂	5.1	4.6	

- VFR: volumetric frequency response
- 1-Bed rapid PSA experiments

Higher values are expected in the structured adsorbent!

Uncoated and Zeolite Coated Catacel Cores Specially Designed for Use in VFR Apparatus

Uncoated and Zeolite Coated Catacel Cores Specially Designed for Use in VFR Apparatus $CPSI = 741 \epsilon_b = 0.64 w_{foil} = 52 \mu w_{coating} = 51 \mu \rho_b = 241.93 \text{ kg/m}^3$

Zeolite Coated Catacel Metal Foil

Parallel Channel Structured Adsorbent Column Containing Three 6" Zeolite Coated Catacel Cores

CPSI = 741 $\varepsilon_{b} = 0.64$ $w_{foil} = 52 \mu$ $w_{coating} = 51 \mu$ $\rho_{b} = 241.93 \text{ kg/m}^{3}$

Parallel Channel Structured Adsorbent Column Containing Three 6^{*} Zeolite Coated Catacel Cores

CPSI = 741 $\varepsilon_{b} = 0.64$ $w_{foil} = 52 \mu$ $w_{coating} = 51 \mu$ $\rho_{b} = 241.93 \text{ kg/m}^{3}$

Structured Adsorbent Pressure Drop Open Cell Corrugated Structure and Beaded Media

12

Pressure Drop Apparatus $Q_{max} = 1000$ SLPM $\Delta P_{max} = 30, 70$ or 140 in H₂0

dP/dl (KPa/m)

one 1.5" 290 CPSI 10 380 CPSI 6in CED Packed Bed --- Ergun 4 2 14 16 18 20 10 12 Interstitial Velocity (m/s)

3-D CFD Compressible Navier-Stokes Equations

goal: $\Delta P_{max} < 20$ kPa/m at design velocity of 20 m/s

New 1-D Pressure Drop Correlation for Parallel Channel Structured Adsorbent and Use in DAPS

$$F(Re) = f_1 + \frac{f_2}{Re}$$
$$Re = \frac{2\rho V_Z a_h}{\mu}$$
$$f_1 = 2.5 \times 10^{-3}$$
$$f_2 = 25.42$$

Developed from 3-D CFD Simulations

DAPS of Bench Scale PSA Processes Zeolite Coated Catacel Structured Core $y_F = 0.1592 CO_2, 0.8029 N_2$ and 0.0379 O₂

Determination of Optimal Channel Shape

 use 1-D models with friction factors and mass transfer parameters determined by 3-D CFD
match performance to predictions from DAPS, then find minimum parasitic energy over key parts of cycle

Shape (sides)	Hydraulic Diameter, D _h	Friction Factor, f	
Triangle (n=3)	$D_h = \frac{\sqrt{3}}{3}a$	$f = \frac{53.3}{\text{Re}}$	
Square (n=4)	$D_h = a$	$f = \frac{56.9}{\text{Re}}$	
Hexagon (n=6)	$D_h = \sqrt{3}a$	$f = \frac{60.2}{\text{Re}}$	
Circle $(n=\infty)$	$D_h = 2R$	$f = \frac{64}{\text{Re}}$	

Best Shape Estimates from Rapid 1D Model Based on **Parameters** from **3-D CFD Models Comparison** of Friction **Factors from** CFD and Theory

Best Shape Estimates from Rapid 1-D Model Based on Parameters from 3-D CFD Models

Comparison of Breakthrough Times from Different Mass Transfer Models

Where are we headed?

On-Going Tasks to Complete in BP 2

- test breakthrough and cycling behavior of zeolite coated Catacel cores with CO₂-N₂ in 1-bed PSA apparatus
- test cycling behavior of multi-bed PSA apparatus with CO₂-N₂ using 3 mm zeolite beads
- validate DAPS with results from bench scale PSA systems utilizing zeolite beads and zeolite coated Catacel cores
- measure pressure drop through zeolite coated Catacel cores
- characterize thermodynamic and mass transfer properties of zeolite coated Catacel cores and refine PSA cycle schedule via modeling with DAPS
- study adsorbent (zeolite crystals and silica gel) stability in presence of trace levels of NO_x and SO₂
- validate 1-D, 2-D and 3-D CFD models by comparison to DAPS
- investigate friction factor and mass transfer assumptions during dynamic adsorption and desorption to refine 1-D models
- use 1-D models to optimize Catacel channel shape

Project	Budget Period 1		Budget Period 2		Budget Period 3		
Team Member	Gov.	Cost	Gov.	Cost	Gov.	Cost	Total
	Share	Share	Share	Share	Share	Share	
Grace	139441	34860	75084	18772	145089	36272	449518
USC	670000	167500	490000	122500	490000	122500	2062500
Battelle	239115	59978	191791	47930	159744	39998	738556
Catacel	125592	31398	172187	43047	100662	25166	498052
TOTAL	1174148	293736	929062	232249	895495	223936	3748626

Breakdown in % of Total Budget

USC	55.0%
Battelle	19.7%
Catacel	13.3%
Grace	12.0%

Acknowledgements Funding provided by DOE/NETL and SAGE is greatly appreciated!

