Impact of Microstructure on the Containment and Migration of CO$_2$ in Fractured Basalts
Project Number DE-FE0023382

Daniel Giammar, Mark Conradi, Sophia Hayes, and Phil Skemer
Washington University in St. Louis

Brian Ellis
University of Michigan

U.S. Department of Energy
National Energy Technology Laboratory
Carbon Storage R&D Project Review Meeting
Transforming Technology through Integration and Collaboration
August 18-20, 2015
Presentation Outline

• Project Overview
• Carbon Sequestration in Fractured Basalts
• Research Approach
• Technical Status
 – Basalt acquisition and characterization
 – Mineral carbonation
 – *In situ* solid-state 13C NMR tool
 – Flow-through testing apparatus
• Summary and Opportunities
Benefit to the Program

• Program Goals Addressed
 – Improve reservoir storage efficiency while ensuring containment effectiveness.
 – Support ability to predict CO$_2$ storage capacity in geologic formations within ± 30 percent.

• Project Benefits
 – Generate datasets for evaluating the efficiency of carbon sequestration in fractured basalts.
 – Determine the extent to which mineral carbonation may either impede or enhance flow.
 – Develop the experimental infrastructure for evaluating CO$_2$ behavior in fractured materials.
Project Overview: Goals and Objectives

• Overarching Project Objective: advance scientific and technical understanding of the impact of fracture microstructure on the flow and mineralization of CO$_2$ injected in fractured basalt.

• Budget Period I. Planning and Preliminary Experiments on Static Interactions with Basalts
 – Develop a library of natural and artificial basalts with a range of representative mineral contents and fracture microstructures.
 – Demonstrate the integration of bench-scale experiments with an array of characterization tools to identify the locations, amounts, and types of carbonate mineral trapping in fractured basalts.
 – Develop laboratory-scale system for evaluating CO$_2$-rich fluid interactions with fractured basalts.
Project Overview: Goals and Objectives

• Budget Period II. Evaluation of Static Conditions and Development of Flow-through Capabilities
 – Evaluate the effects of basalt composition and fracture properties on the extent and mechanisms of carbon sequestration in diffusion-limited zones.
 – Quantify the extent to which confining pressure controls the propagation of fractures in basalts upon reaction with CO₂.
 – Create data packages that can be used for model development.
 – Develop laboratory-scale equipment for NMR and CT of pressurized systems with advective flow.
Project Overview: Goals and Objectives

• Budget Period III. Evaluation of Fractured Basalts with Flow of CO₂-Rich Fluids
 – Examine the impacts of precipitation and fracture development on the permeability of fractured basalt to CO₂-rich fluids.
 – Estimate the storage capacity of fractured basalts as a function of mineral content and fracture structure, and quantify storage by different mechanisms.
 – Demonstrate the application of advanced NMR and CT tools to fractured basalts with flow.
 – Develop data packages that can be used for reactive transport model development.
Project Overview: Goals and Objectives

Go/No-Go Decision Point 1. To proceed to Budget Period II, the following criteria must be met.

- A library of at least ten basalt samples with different compositions and fracture properties have been acquired and characterized.
- The reactor for performing static experiments with an applied confining pressure has been designed, fabricated, and tested with one sample.

Note: A “basalt sample” is a particular combination of composition and fracture property.
Sequestration in Magnesium-Rich Formations

• Most target formations are sandstones, but mafic (Fe- and Mg-rich) rocks are alternative formations with high mineral trapping capacity.

• Continued fracturing of the rock may be promoted by temperature and volume changes from reactions.

• Also applicable to ex situ mineral carbonation in engineered reactors.

Carbonate precipitates on basalts after 854 days of reaction at 103 bar CO$_2$ and 100° C. Schaef et al., *Int. J. Greenhouse Gas Cont.*, 2010
Pilot-Scale Injections into Basalts

Pilot-scale injections into basalts have been performed in Washington and in Iceland.

Location of 1000 ton pilot-scale test by the Big Sky Carbon Sequestration Partnership, 2013

Calcite in a core retrieved from the site of the 2012 CarbFix injection of CO$_2$-rich water into basalt in Iceland. 80% of injected CO$_2$ mineralized within 1 year.

www.or.is/en/projects/carbfix/
Methodology – Mineral Trapping

\[\text{silicate mineral } \text{Mg}_2\text{SiO}_4 \]

\[\text{CO}_2^{(scf)} + H_2O = 2H^+ + CO_3^{2-} \]

\[\text{pH}\downarrow \quad \text{DIC}\uparrow \]

\[\text{carbonate mineral } \text{MgCO}_3 \]

\[\text{Mg}^{2+} + CO_3^{2-} = \text{MgCO}_3^{(s)} \]

When and where do carbonate minerals precipitate in systems with high solid:water ratios and with mass transfer limitations?

How does precipitation affect transport properties?
Research Questions

- How do reactions proceed in fractured rocks?
- What volume of a mafic rock is available for sequestration?
- Will carbonate mineral precipitation impede or accelerate sequestration?
Research Approach

Fractured Basalts
- Natural and artificial rocks
- Varying composition and fracture structure

Bench-Scale Experiments
- Relevant pressure, temperature, and brine composition
- Static (dead-end fractures)
- Flow (monitor variation)
- With/without confining pressure

Characterization
- Pre- and post-reaction
- Ex situ and in situ techniques.
Forsterite Fractured Rock

- Artificial aggregates of olivine (Fo$_{90}$) from vacuum sintering.
- Reacted for 15 days in water at 100 °C 100 bar CO$_2$.
- Carbonate minerals form in narrow zones like fractures.

Mineralization in Tight Gap Between Rock and Tubing

- 6 mm diameter
- 10 mm length
- ~25% porosity

Post-Reaction Fracture Structure
Starting Basalt: Composition

Columbia River Flood Basalt (WA)

- Ca-rich pyroxene: 22%
- Pyroxene: 1%
- Olivine: 9%
- Plagioclase: 31%
- K-feldspar: 33%
- Ca-rich pyroxene: 21%
- Pyroxene: 1%
- Olivine: 1%
- Serpentine: 14%
- Plagioclase: 28%
- Glass, Apatite, Chromite: 3%

Serpentinized Basalt (CO)

- Ilmenite: 3%
- Mg: Ca: Al
- Olivine or Orthopyroxene
- K-feldspar
- Plagioclase
- Ca-rich pyroxene
- Serpentine: 1%
Starting Basalt: Microstructure

Columbia River flood basalt:

- Serpentized Mg-silicate
- Feldspar inclusions

Olivine-rich basalt: Inclusions and serpentinized grains

Average phenocryst size

Olivine-rich basalt:
- Ca-rich pyroxene: 123 μm
- Plagioclase: 99 μm
- Serpentine: 143 μm

Flood basalt:
- Ca-rich pyroxene: 75 μm
- Plagioclase: 53 μm
- Olivine: 88 μm
Basalt Fractured Core

Saw-Cut Basalt
1-inch diameter, 1.6-inch length

Reassembled Core
Wrapped with Epoxy

Single Groove Pattern
10 mm wide
80-100 um depth

Meandering Pattern
1 mm wide
80-100 um depth
Static Experiments with Basalt

Serpentinized basalt (CO) reacted for 4 weeks at 150°C and 100 bar CO$_2$.

- Spatially localized carbon accumulation.
- Direct evidence for carbonate mineral formation in fracture.

Packed bed loaded with powder

Half-inch fractured core coated with epoxy

![Graph showing total carbon vs. depth](image)

![Raman shift spectra](image)

- Diagnostic peak for carbonate at 1083 cm$^{-1}$
Static Experiments with Basalt

Pristine flood basalt (WA) reacted for 4 weeks at 150°C and 100 bar CO₂.

Sandpaper-roughened, saw-cut, 0.5-inch cores ~140 um fracture

Electron Microscopy

- Well-developed crystals have a location of maximum precipitation.

Raman Spectroscopy

- Aragonite (CaCO₃) identified.
High Pressure NMR Hardware

- NMR is element-selective, quantitative, and non-destructive.
- 13C NMR can track the growth of carbonate minerals.

13C NMR spectra taken at different reaction times. Temperature was 100°C and pressure decreased from 96.5 bar – 45 bar over the duration of the experiment.
High Pressure NMR Hardware

Flow-through Probe

- Fully constructed and able to get NMR
- Leak and pressure tested
- Heating and temperature control
Flow-through Fractured Basalt

- Evaluate silicate dissolution and carbonate precipitation along fracture under confining stress.
- Examine effect of reactions on transport properties.
Flow-through Fractured Basalt

Preliminary experiments
P_{CO_2} = 100 bar
Confining pressure = 200-350 bar
Temp = 50°C
Flow rate = 3-5 mL/h

CO_2-driven dissolution resulted in permeability decrease under confining stress

Dissolved Mg

Dissolved Fe

Dissolved Si
Accomplishments to Date

- Acquisition, characterization, and fracture preparation of two natural basalts and one artificial basalt.
- Demonstration of carbonate mineral formation for all three materials upon reaction with CO$_2$-rich solutions.
- Integration of multiple techniques to characterize the location and identity of carbonate mineral formation.
- Development of a laboratory-scale system for evaluating CO$_2$-rich fluid interactions with fractured basalts held under confining pressure.
Go/No-Go Decision Point 1. To proceed to Budget Period II, the following criteria must be met.

- A library of at least ten basalt samples with different compositions and fracture properties have been acquired and characterized.
 - 8 samples acquired and characterized. At least 2 more by September 30

Natural Basalts

<table>
<thead>
<tr>
<th>Type</th>
<th>Status</th>
<th>Fracture Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>olivine-rich, pristine (WA)</td>
<td>complete</td>
<td>roughened</td>
</tr>
<tr>
<td></td>
<td></td>
<td>milled notch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>milled flowpath</td>
</tr>
<tr>
<td>olivine-rich, serpentinized (CO)</td>
<td>complete</td>
<td>roughened</td>
</tr>
<tr>
<td></td>
<td></td>
<td>milled notch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>milled flowpath</td>
</tr>
<tr>
<td>Grand Ronde (WA)</td>
<td>coordinating acquisition with PNNL</td>
<td></td>
</tr>
</tbody>
</table>

Synthetic Basalts (iron free)

<table>
<thead>
<tr>
<th>Type</th>
<th>Status</th>
<th>Fracture Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>forsterite-rich</td>
<td>complete</td>
<td>roughened</td>
</tr>
<tr>
<td></td>
<td></td>
<td>milled notch</td>
</tr>
<tr>
<td>pyroxene-rich</td>
<td>in progress</td>
<td></td>
</tr>
<tr>
<td>quartz-containing</td>
<td>In progress</td>
<td></td>
</tr>
</tbody>
</table>

Note: A “basalt sample” is a particular combination of composition and fracture property.

- The reactor for performing static experiments with an applied confining pressure has been designed, fabricated, and tested with one sample.
 - fully complete
Synergy Opportunities

- **Basalt Sequestration Projects:** we can share data and materials with others studying carbon sequestration in basalts (Pollyea and Benson project, Big Sky Carbon Sequestration Project) to generate complementary and not duplicative data.

- **Other Sequestration Projects:** our integrated approach can be used to examine impacts of fracture microstructure on CO$_2$ behavior in other reactive geologic materials (e.g., caprocks).

- **Modeling:** our project is generating a rich dataset that can be used to evaluate reactive transport models and models that link transport and goemechanical properties.

- **Technique Sharing:** we have unique abilities (e.g., solid state 13C NMR) that can be brought to other groups and shared abilities (e.g., CT scans, triaxial tests) around which we can share best practices.
Summary

– Key Findings
 • Carbon mineralization in fractured basalts can result in mineral trapping on time-scales of years or less.
 • Carbonate precipitation can be visualized using both *ex situ* and *in situ* techniques.
 • Flow-through fractures in basalts can be achieved.

– Lessons Learned
 • Selection of materials is critical.
 • Our team has shared expertise in unexpected ways.

– Future Plans
 • Systematic set of experiments.
 • More experiments, including NMR and CT, with flow.
• Co-PI’s: Mark Conradi, Brian Ellis (Michigan), Sophia Hayes, and Phil Skemer.
• Students and Postdocs: Yeunook Bae, Megan Bushlow, Jinlei Cui, Jeremy Moore, Erika Sesti, Minmeng Tang, Rachel Wells, Wei Xiong
• Other: Helene Couvy
Appendix

– Organization Chart
– Gantt Chart
– Bibliography
August 19, 2015
Bibliography

• Conference Presentations: