High-Pressure Turbulent Flame Speeds and Chemical Kinetics of Syngas Blends With and Without Impurities

Eric L. Petersen

Department of Mechanical Engineering Texas A&M University

2014 University Turbine Systems Research Workshop West Lafayette, IN 21-23 October, 2014

Project Overview

3-Year Project Began in October, 2013

Project Highlights:

- 1. Duration: Oct. 1, 2013 Sept. 30, 2016
- 2. DOE NETL Award **DE-FE0011778**
- 3. Budget: \$498,382 DOE + \$124,595 Cost Share
- 4. Principal Investigator: Dr. Eric L. Petersen

This Project Addresses Several Problems for HHC Fuels

- 1. Improve **NOx kinetics** for High-Hydrogen Fuels at Engine Conditions
- 2. Effect of **Contaminant Species** on Ignition and Flame Speed
- 3. Impact of **Diluents** on Ignition Kinetics and Flame Speeds
- 4. Data on **Turbulent Flame Speeds** at Engine Pressures

There are Five Main Work Tasks for the Project

Work Tasks:

Task 1 – Project Management and Program Planning

Task 2 – Turbulent Flame Speed Measurements at Atmospheric Pressure

Task 3 – Experiments and Kinetics of Syngas Blends with Impurities

Task 4 – Design and Construction of a High-Pressure Turbulent Flame Speed Facility

Task 5 – High-Pressure Turbulent Flame Speed Measurements

Project Overview

TAMU Work is a Team Effort of Several People

Dr. Olivier Mathieu

Anibal Morones

Charles Keesee

Josh Hargis

<u>Task 2</u> – Turbulent Flame Speed Measurements at Atmospheric Pressure

1-atm Turbulent Flame Speed Measurement will Build Upon Tests Done in Previous UTSR Project

- Utilize Existing Turbulent Flame Speed Hardware
- Extend Test Conditions to a Range of u' and Length Scale Values
- Design Test Matrices for Syngas Blends
- Perform Experiments for Syngas Blends at 1 atm Conditions

Existing Rig Characterized for One Main Condition

Features:

- 7075-T6 Heat-Treated Aluminum
- 4 radial impellers
- Diameter: 30.5 cm
- Length: 35.6 cm
- Window Port Diameter: 12.7 cm
- Maximum initial pressure: 1 atm
- Maximum initial temperature: 298 K

Turbulence:

- Intensity: 1.5 m/s rms
- Integral length scale: 27 mm

Recent Experiments Include Effect of Hydrocarbons on H₂-Based Mixtures

- Mixtures Studied: 100% H₂ Syngas (50:50 H₂/CO) 50:50 H₂/CH₄
- 3 repeats per condition, typically

Global Displacement Speeds for Various $\boldsymbol{\phi}$

Recent Data Cover a Wide Range of Flamelet Regions

Extensive Turbulence Field Characterization Underway

<u>Task 3</u> – Experiments and Kinetics of Syngas Blends with Impurities

Overall Task Has 2 Main Goals

- 1. Study Impurity Composition Effect
 - Ignition delay time (τ_{ign}) measurements in a shock tube
 - Laminar flame speed measurements
 - Large range of P, T
- 2. Kinetics Modeling of Impurities

Update Today Will Focus on 2 Main Projects

 Impurity Effect on Ignition {NH₃, H₂S, H₂O, CO₂, CH₄} for Coal Syngas

2. Hydrocarbon Effect on Laminar Flame Speeds

Mixture

Mixture derived from averaging 40 real coal syngas

- Baseline (BS): (60 CO / 40 H₂)/O₂ (Krecji, Petersen et al., 2013)
- Baseline + others
 - (98.47%)**BS** + (1.53%)**CH₄**
 - (91.35%)**BS** + (8.65%)**CO**₂
 - (99.50%)BS + (0.50%) H₂S
- Full Coal Syngas : $(60 \text{ CO} / 40 \text{ H}_2) + \text{CH}_4 + \text{CO}_2 + \text{H}_2\text{O}$
 - $(28.76\%)H_2 + (39.73\%)CO + (1.50\%)CH_4 + (9.00\%)CO_2 + (21.00\%)H_2O$
- Full Coal Syngas + impurities
 - (97.87%)Full Coal Syngas+(1.70%)NH₃ +(0.43%)H₂S

ELP2

ELP2 there is too much information on this one slide. It will be more effective to break it up into two slides, one on the mixture and one on the experimental conditions.

In fact, the mixture slide should be after the "Objectives" slide, before the shock tube details section. Eric Petersen, 3/6/2014 Investigated in dilute conditions at three pressures

- Diluted conditions: 98 97.975% Ar
- Equivalence ratio: **0.5**
- Pressure: 1.7, 13, and 32 atm

Shock-Tube Apparatus

High pressure shock-tube facility at Texas A&M

High-Pressure Shock-Tube Facility

- 1 100 atm Capability
- 600 4000 K Test Temperature
- Up to 20 ms Test Time
- 2.46 m Driver and 4.72 m Driven
- 15.24 cm Driven Inner Diameter

Measurement

Ignition Delay Time Obtained from OH* Time History

Water can condense and change mixture composition

- Condensation of H₂O during filling process
- Absorption onto shock tube walls
- Uncertainties in H₂O concentration in tank mixture

Water concentration measured by laser light absorption

- v1+v3 transition band absorption
- Near 1387.877 nm
- Highly Diluted Mixtures (98% Ar)

Measurement

Water concentration measured by laser light absorption

Measured concentration within 5% of target value

Results – 1.7 atm

Only H_2S addition has a noticeable effect at low temperatures

Results – 13 atm

 τ_{ign} shorter for the full mixture at high temperatures

Results – 32 atm

All mixtures have similar behavior at 32 atm

Comparison of the data with literature mechanisms

- C0-C4 from Wang et al., 2007 (USCII)
- C0-C1 from Li et al., 2007 (Princeton)
- Small HC mechanisms from Konnov, 2009
- C0-C3 from Metcalfe et al., 2013 (NUI Galway)
- Addition of the OH* sub-mechanism from Hall and Petersen, 2006 (if needed)

Model - Results

-AIM

NUIG and **PRCT** Models Agree Best with Data at Higher Pressures

Disagreement at 13 atm and high temp. for the Coal syngas

Model - Results

Mixtures with H₂S Impurity Were Also Modeled

AM

- CO/H₂ Chemistry from Metcalfe, Curran et al. (2013)
- H₂S Chemistry from Mathieu, Petersen et al. (2014)
- OCS from Glarborg and Marshall (2013)

Laminar Flame Speed Study Focused on Hydrocarbons

- 1. Coal-Syngas and Bio-Syngas Blend Baselines
 - Coal: 40/60 H₂/CO
 - Bio: 50/50 H₂/CO
- 2. Coal Syngas with 1.6%, 7.4% CH_4
- 3. Coal Syngas with $1.7\% C_2H_6$
- 4. Bio Syngas with 5%, 15% CH₄
- 5. Bio Syngas with 1.6% C_2H_6

Task 3 – Impurity Effects

Baseline Mixtures and Model Show Good Agreement

Model: AramcoMech 1.3

Coal-Derived Syngas Results

AM

Bio-Derived Syngas Results

Task 3 – Impurity Effects

Model Good at Extremes but Improvements Needed For Blends

Several Other Tasks Have been Completed or are Underway

 Completed Numerical Study of Effect of Impurities (NOx, H₂S) on Syngas Blend Kinetics at Real Engine Conditions

• Applying **OH Laser Absorption Diagnostic** in Collaboration with Aerospace Corporation (Los Angeles, CA)

• Set up "New" Shock Tube at TAMU (inherited from Aerospace Corporation)

• Finished Kinetics Mechanism for NOx and Ammonia Chemistry with H₂/CO

Task 3 – Impurity Effects

Aerospace Shock Tube Has Been Installed at TAMU

<u>Task 4</u> – Design and Construction of a Turbulent Flame Speed Facility

AM

Borghi Diagram shows Current and Desired Regions for Turbulent Flame Speeds

New Facility Will be Designed and Built at TAMU

- 1. Detailed Design and Structural Analysis
- 2. Fabrication of Vessel Components
- 3. Installation of Vessel
- 4. Characterization of Flow Conditions

AM

Task 4 Design Effort is Underway

- Survey of Existing Turbulent Flame Speed Facilities Completed
- Trade-off Study for Final Design Finished
- Critical Aspect is how to Handle or Reduce the Overpressure
- Will Move Toward a Design that Involves a Blowout Disk and Reservoir for Overpressure
- Detail Design is Underway

Task 4 – New Facility

Time [s]

New Design Will Utilize a Pressure Relief System

Conceptual Design is Complete

Timeline Showing Task 4

				Proje	ct Tim	eline							
	2013	2014					2	2015			2016		
	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13
	Qtrly Report (QR1)	QR2	QR3	CR4	QR5	QR6	QR7	QR8	QR9	QR10	QR11	Final Report
Task 1		7 '	T I	▼ √	7	V	\forall	∇	∇	∇	\forall	\forall	V
Project Management & Industry Collaboration	 Ind Panel	Identify Plans		Topical Report	<u> </u>	Re-evaluate	 Plans	Topical Rep	∆ ort 2			Proje	ct End
Task 2													
Turbulent Flame Speed Meas. at Atmospheric Press.	A Test Plan			4	L 2 d Matrix da			alatad					
Task 3	Test Plan	TSI Mai	nx Done		2 IO Matrix OO	ne -	and Matrix Corrig	bieted					
Experiments and Kinetics of Syngas with Impurities	A Toot Plan		ST#1 Toot		ES#1 Toots		#2 Teete	ES#2 Too				Tooto	
Task 4	restrian		51#11636	5	1.5#1.1636	5 51	#2 10313	1 0#2 163	10 01	#0 10313	1103011-0#0	16313	
Design and Construction of HP Turb Flame Speed Rig					<u> </u>				Δ				
Task 5			prelim design		F nal design		Fab Done		Characteriz	ation Done			
High-Pressure Turbulent Flame Speed Measurements											Δ		7
										1st Matrix Complete		2nd Matrix Done	

now

<u>Task 5</u> – High-Pressure Turbulent Flame Speed Measurements

Task 5 – High-Pressure Turbulence

High-Pressure Experiments Will be Performed for Selected Syngas Blends

- Identify Two Test Matrices (Fuel Blends) for Study
- Utilize Results from Tasks 2 and 3 for Guidance
- Perform Experiments at Elevated Pressures
- Parallel High-Pressure Laminar Tests Should also be Done

Task 5 – High-Pressure Turbulence

Timeline Showing Task 5

				Proje	ct Time	eline							
	2013	2014				2015				2016			
	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13
	Qtrly Report (QR1)	QR2	QR3	R4	QR5	QR6	QR7	QR8	QR9	QR10	QR11	Final Report
Task 1		7	V	V V	7	7	∇	7 7	7	V	\forall	∇	∇
Project Management & Industry Collaboration	 Ind Panel	Identify Plans		Topical Report		A Re-evaluate Plans		 Topical Report 2			Project End		Ct End
Task 2													
Turbulent Flame Speed Meas. at Atmospheric Press.				4									
Task 3	Test Plan	1st Mai	trix Done		and Matrix dor	ie a	ard Matrix Comp	pleted					
Experiments and Kinetics of Syngas with Impurities	A Test Plan		ST#1 Test		ES#1 Tests	TT2	#2 Tests	ES#2 Tests	A		Einich ES#2	Tests	
Task 4	restrian		ST#TTESC	5	1 3#1 163(3		+2 10313	1 3#2 163(3	51#0	16313	11113111-3#3	16513	
Design and Construction of HP Turb Flame Speed Rig								2	4				
Task 5			prelim design		nal design		Fab Done		Characterizat	ion Done			
High-Pressure Turbulent Flame Speed Measurements										1st Matrix C			rix Done
										TSC MIDLIN OF	ompiete	2110 Mat	IIX DOILC

now

Summary

Progress on the Five Main Work Tasks for the Project Was Presented

Task 1 – Project Management and Program Planning

Task 2 – Turbulent Flame Speed Measurements at Atmospheric Pressure

Task 3 – Experiments and Kinetics of Syngas Blends with Impurities

Task 4 – Design and Construction of a High-Pressure Turbulent Flame Speed Facility

Task 5 – High-Pressure Turbulent Flame Speed Measurements

