

Developing Piezo-Dielectric Polymer-Derived Ceramics For Wireless Strain Sensor Applications

Yejie Cao

Advanced Materials Processing and Analysis Center University of Central Florida, Orlando, FL 32816, USA E-mail: <u>linan.an@ucf.edu</u>; Phone: 407-288-3436

Outline

Introduction

- Needs
- Current state

Developing polymer-derived ceramics

- Introduction to PDCs
- Dielectric properties of SiAICN

Sensor design and fabrication

- **Effect of sensor dimension on sensor performance**
- Sensor fabrication

Summary and Future work

Introduction: Needs

Turbine for power generation/propulsion

Cold Section

Combustion

Turbine Exhaust

Hot Section

Material manufacturing

Introduction: Current State

Introduction: Passive Wireless Sensors

• New sensor concept developed at UCF, leading by Dr. Gong

○ **Principle: RF cavity based resonator**

We have demonstrated a temperature sensor that can work at temperatures up to 1300°C

PDCs: Processing

PDCs: Properties

Excellent high-temperature structural properties

• Excellent thermal stability

- PDCs can be stable up to 1800-2200°C against decomposition and crystallization

• Excellent mechanical behavior

- Creep resistance of PDCs can be higher than polycrystalline SiC/Si₃N₄
- Excellent high-temperature strength and Elastic modulus

o Excellent oxidation/corrosion resistance

- Oxidation rate of PDCs is more than 10 times lower than conventional silicon based materials
- Corrosion rate of PDCs is about 10 times higher than silicon based materials
- Excellent strength retention

PDCs: Microfabrication Capability

PDC SiAICN: Materials Synthesis

SiAICN has excellent oxidation resistance and thermal stability

<u>Objective</u>: Investigate the effects of compositions on dielectric behavior of SiAICN for obtain optimal materials with sufficient low dielectric loss.

• Starting materials

- Polysilazane (VL 20) main precursor.
- ✓ Phenylbis (2, 4, 6trimethylbenzoyl) phosphine oxide (819) - the photo/thermal initiator for UV curing.
- Methacrylic Acid (MA) for enhancing the effectiveness of UV/thermal curing.
- Aluminum-tri-sec-butoxide (ASB)
 source for Al.
- Poly (melamine-coformaldehyde) acrylated solution (PVN) - source for N.

PDC SiAICN: Materials Synthesis

Sample	MA	ASB	819	VL20	PVN
SA-1	2 wt%	5 wt%	5 wt%	78 wt%	10 wt%
SA-2	2 wt%	5 wt%	5 wt%	68 wt%	20 wt%
SA-3	2 wt%	5 wt%	5 wt%	58 wt%	30 wt%
SA-4	5 wt%	5 wt%	/	90 wt%	/
SA-5	/	1 wt%	/	99 wt%	/
SA-6	/	5 wt%	/	95 wt%	/
SA-7	/	10 wt%	/	90 wt%	/
SA-8	2 wt%	1 wt%	/	97 wt%	/

PDC SiAICN: Dielectric Properties

Sample	Dielectric loss	Dielectric permittivity
SA-1	0.042	4.87
SA-2	0.083	6.66
SA-3	0.21	7.40
SA-4	0.0085	4.45
SA-5	0.0045	3.6
SA-6	0.0046	3.55
SA-7	0.0046	3.85
SA-8	0.0045	4.8

PDC SiAlCN: Dielectric Properties

Effect of PVN

- Permittivity increase with PVN
- Loss increase with PVN
- Loss is too high for the samples with PVN

Effect of MA/819

- Permittivity increase slightly with MA
- Loss increase slightly with MA
- Loss increase significantly with 819

Effect of ASB

- Permittivity/loss remain unchanged with ASB
- Loss is good for high temperature sensing

PDC SiAICN: Materials Selection

Sa	mpie	MA	ASB	819	VL20	PVN
S	A-1	2 wt%	5 wt%	5 wt%	78 wt%	10 wt%
S	A-2	2 wt%	5 wt%	5 wt%	68 wt%	20 wt%
S	A-3	2 wt%	5 wt%	5 wt%	58 wt%	30 wt%
S	A-4	5 wt%	5 wt%	/	90 wt%	/
S	A-5	/	1 wt%	/	99 wt%	/
S	A-6	/	5 wt%	/	95 wt%	/
S	A-7	/	10 wt%	/	90 wt%	/
S	A-8	2 wt%	1 wt%	/	97 wt%	

Sample	Dielectric loss	Dielectric permittivity
SA-1	0.042	4.87
SA-2	0.083	6.66
SA-3	0.21	7.40
SA-4	0.0085	4.45
SA-5	0.0045	3.6
SA-6	0.0046	3.55
SA-7	0.0046	3.85
SA-8	0.0045	4.8

PDC SiAICN: Piezo-Dielectricity

- Very high piezo-dielectric coefficient
- Lead to high sensitivity and wide sensing range

- Permittivity monotonically increases with pressure.
- Suitable for strain/stress sensor

PDC Sensors: Principle

Principle: RF Resonator

- Material exhibits piezo-dielectricity;
- Material with low dielectric loss to gain sufficient high *Q*-factor.

PDC Sensors: Wireless Strain Sensor

Parameters:

- Dimensions of SiAlCN: L_c, W_c, and H
- \circ Slot dimensions: L, W, and X_a

Effect of SiAICN Dimension

$L_{c'} = 2W_{c'}$

PDC Sensors: Sensor Design

Effect of Slot Dimension

Effect of SiAICN Dielectric Loss

PDC Sensors: Fabricated Sensor

Summary and Future Work

- Dielectric properties of polymer-derived SiAlCN ceramics have been systemically investigated to understand the effect of material composition on the dielectric loss.
- A SiAlCN ceramic with significant piezo-dielectric behavior and sufficient low dielectric loss has been identified for strain sensor application.
- The effects of sensor dimension on resonant frequency and Q-factor have been studied. A strain sensor has been fabricated accordingly.
- The fabricated sensor will be tested to demonstrate the concept.