

Study of particle rotation effect in gas-solid flows using direct numerical simulation with a lattice Boltzmann method

Qiang Zhou, L.-S. Fan The Ohio State University Kyung C Kwon Tuskegee University

2014 NETL Crosscutting Research Review Meeting Sheraton Station Square Hotel Pittsburgh, PA, May 19-23, 2014 ^{1/30}

Outline

- Background: Lift force due to particle rotation
- Background: Immersed boundary-Lattice Boltzmann
 method, from first order to second order
- Drag force and lift force in simple cubic arrays of spheres
- Drag force and lift force in random arrays of spheres
- Open question, how to apply lift force in practical simulations.

- Gas-solid multiphase flows are prevalent in many fossil fuel processes such as gasification and combustion.
- Advanced computational technique known as the computational fluid dynamics (CFD) has been recognized as an emerging tool that is able to reduce the cost in the design and scale-up of the multiphase reactors involved in those processes, and has been applied in typical equipment such as fluidized bed gasifiers and chemical looping combustion reactors.
- The capability of the CFD in correctly predicting multiphase flow dynamics relies heavily on accuracy of sub-models that account for particle-fluid interactions and particle-particle interactions.
- The overall objective of our proposed research is to improve fundamental understanding of such interactions, and to formulate a new drag model and a new lift force model that reflects particle rotation effects. 3/30

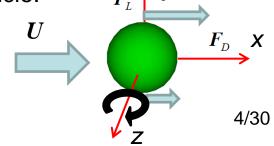
 Previously, it was believed that the lift force (Magnus force) caused by particle rotation is insignificant compared to the drag force.

Rotational Reynolds number: $Rer = \omega D^2 / v$

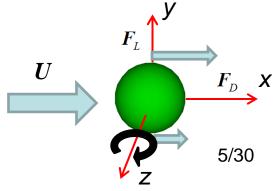
- Rubinow & Keller (1961), Stokes flow: $F_D = 6\pi a \mu U [1 + \frac{3}{8}Re + o(Re)]$ lift-to-drag ratio $F_L/F_D = Rer/24$ $F_L = -\pi a^3 \rho \omega \times U [1 + O(Re)]$
- Saffman (1965) mentioned that the lift force due to the rotation is less by an order of magnitude than that due to the shear in the flow, unless the rotation speed is very much greater than the rate of shear.

$$F_{L} = 6.46\nu\rho a^{2}U(|\alpha|/\nu)^{1/2} - \frac{11}{8}\rho U\alpha a^{3} + \pi\rho U\omega a^{3}$$

• Bagchi & Balachandar (2002) found that, even in finite Reynolds number regimes, the lift due to free particle rotation (induced by flow shear) is less significant than shear-induced lift on the particle. $F_L \uparrow Y$



- White and Schulz (1977) obtained the particle trajectories by high-speed motion pictures (2000 frames/s) of the saltating spherical glass microbeads of diameter 0.35–0.71 mm, and found that
- ✓ the typical spin rates of sand particles are the order of several hundred revolutions per second (Rer~50);
- ✓ the Magnus lifting force can produce good computational trajectory and increase the height of sand motion by 50%;
- The Saffman force can be safely neglected without noticeably affecting particle trajectories;
- They pointed out that the high speed spinning rates are generally obtained by collisions with the sand surface
- White (1982) and Zou et al. (2007) gave similar reports.



- Recent high-speed imaging show that
- Wu et al.(2008) measured the particle rotation speed in a cold pilot-scale Circulating Fluidized Bed (CFB) riser. Particle diameter: 0.5 mm.

Particle rotation speed:

Average: 300 rev/s Rer=30

Maximun: 2000 rev/s. Rer=210

• Shaffer et al. (2009) reported the rotation rate of particle in a riser flow. particle size is round 0.5~0.75mm

Particle rotation speed:

Average: 22700 rpmRer=90

Maximum:90400 rpm

Rer=350

• The importance of the lift force needs to be reevaluated.

Outline

- Background: Lift force due to particle rotation
- Background: Immersed boundary-Lattice Boltzmann method, from first order to second order
- Drag force and lift force in simple cubic arrays of spheres
- Drag force and lift force in random arrays of spheres
- Open question, how to apply lift force in practical simulations.

Immersed Boundary Method (IBM) Advantage:

- The non-slip/non-penetration (ns/np) is easily imposed by adding additional force to the flow in the vicinity of the particle surface
- Does not need regridding when particles are moving

Disadvantage:

- The approximation of ns/np is hard to be exactly imposed.
- Traditional IBM only yields first-order accuracy.

Recent improvement by Breugem (2012)

- Multidirect forcing scheme to reduce the ns/np error (Luo et al. 2007)
- A slight retraction (Hofler and Schwarzer 2000) of the Lagrangian grid from the surface towards the interior of the particles is used to enhance the accuracy of IBM.
- Breugem (2012) demonstrated that the improved IBM coupled with traditional incompressible NS-solver gives a second order of grid convergence

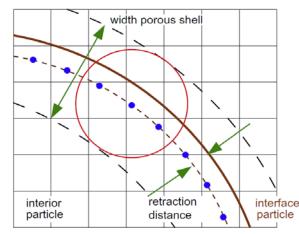


Fig. 3. Illustration of the porous shell covering a solid particle. The dots indicate the position of Lagrangian grid points, which are retracted from the actual interface (the solid line) with a fraction of the Eulerian grid spacing (about $0.3\Delta x$ in this case). The circle depicts the range of action of the regularized Dirac delta function.

Our contribution: embed the improved IBM into LBM

- Using Runge-Kutta (RK) schemes to advance the position, the linear momentum and angular momentum of the particle. RK requires fluid field information at fractional time steps.
- In the framework of LBM

$$m_j(\mathbf{x} + \mathbf{e}_j \Delta t, t + \Delta t) - m_j(\mathbf{x}, t) = -\frac{1}{\tau} \left[m_j(\mathbf{x}, t) - m_j^{(eq)}(\mathbf{x}, t) \right] + \Delta t F_{f,j}(f),$$

one can not directly get the flow information in the fractional time step between $n\Delta t$ and $(n+1)\Delta t$. We get the flow information by simple extrapolation:

$$\boldsymbol{u}^{n+\alpha} = \boldsymbol{u}^n + (rhs^n + \boldsymbol{f}^*) \alpha \,\Delta t / \rho^n$$

$$\rho^{n+\alpha} = \rho^n - \nabla \cdot (\rho^n \boldsymbol{u}^{n+\alpha}) \alpha \,\Delta t$$

• These two equations are implemented locally in the cubic computational domains that circumscribe particles.

Procedures for the fluid phase:

 $\mathbf{f} = -\nabla p_e$ do q = 1, i Field extrapolation $\boldsymbol{f}^{q-1,N_s} = \begin{cases} 0, & q=1\\ \sum_{k=1}^{q-1} \beta_{q-1,k} \boldsymbol{f}^{k,N_s} / \sum_{k=1}^{q-1} \beta_{q-1,k}, & q>1 \end{cases} \qquad \boldsymbol{F}_l^{q,s} = \boldsymbol{F}_l^{q,s-1} + \frac{\boldsymbol{\widetilde{U}}_{p,l}^{q-1} - \boldsymbol{\widetilde{U}}_l^{s-1}}{\Delta t} \quad \forall l,$ $\boldsymbol{u}^* = \boldsymbol{u}^0 + (rhs^0 + \boldsymbol{f}^{q-1,N_s})\alpha_q \,\Delta t/\rho^0,$ $\rho^* = \rho^0 - \nabla \cdot (\rho^0 \boldsymbol{u}^*)\alpha_q \,\Delta t,$ $\tilde{\boldsymbol{u}} = (\rho \boldsymbol{u})^* + rhs^* \Delta t$ $\widetilde{\boldsymbol{U}}_{l} = \sum \widetilde{\boldsymbol{u}} \delta_{d} \left(\boldsymbol{x} - \boldsymbol{X}_{l}^{q-1} \right) \Delta x \, \Delta y \, \Delta z \quad \forall l,$ $\widetilde{\boldsymbol{U}}_{n,l}^{q-1} = \rho^* \boldsymbol{U}_{n,l}^{q-1} \quad \forall l,$ $F_l^{q,0} = \frac{\widetilde{U}_{p,l}^{q-1} - \widetilde{U}_l}{\frac{\Lambda t}{\lambda t}} \quad \forall l,$ $\boldsymbol{f}^{q,0} = \sum \boldsymbol{F}_{l}^{q,0} \delta_{d} (\boldsymbol{x} - \boldsymbol{X}_{l}^{q-1}) \Delta V_{l},$ $\tilde{\boldsymbol{u}}^{0} = \tilde{\boldsymbol{u}} + \Delta t \boldsymbol{f}^{q,0},$ **Direct forcing scheme**(Uhlmann 2005)

Multidirect forcing scheme(Luo et al. 2007) do s = 1, N_s $\widetilde{\boldsymbol{U}}_{l}^{s-1} = \sum \widetilde{\boldsymbol{u}}^{s-1} \delta_{d} (\boldsymbol{x} - \boldsymbol{X}_{l}^{q-1}) \Delta x \Delta y \Delta z \quad \forall l,$ $\boldsymbol{f}^{q,s} = \sum \boldsymbol{F}_{l}^{q,s} \delta_{d} (\boldsymbol{x} - \boldsymbol{X}_{l}^{q-1}) \Delta V_{l},$ $\tilde{\boldsymbol{u}}^{s} = \tilde{\boldsymbol{u}} + \Delta t \, \boldsymbol{f}^{q,s},$ end do $\boldsymbol{f} = \boldsymbol{f} + \beta_{iq} \boldsymbol{f}^{q,N_s},$ end do · Update particle motion $m_j(\mathbf{x} + \mathbf{e}_j \Delta t, t + \Delta t) - m_j(\mathbf{x}, t) = -\frac{1}{\tau} \Big[m_j(\mathbf{x}, t) - m_j^{(eq)}(\mathbf{x}, t) \Big] + \Delta t F_{\mathbf{f}, j}(\mathbf{f}),$ $\rho^n \to \rho^{n+1}, \quad \boldsymbol{u}^n \to \boldsymbol{u}^{n+1}, \quad p^n \to p^{n+1},$

11/30

Jpdate particle motion

$$u^{**} = u^{0} + (rhs^{0} + f^{q-1,N_{s}})\gamma_{q} \Delta t/\rho^{0},$$

$$\rho^{**} = \rho^{0} - \nabla \cdot (\rho^{0}u^{**})\gamma_{q} \Delta t,$$

$$u^{*} = \tilde{u}^{N_{s}}/\rho^{*},$$

$$\rho^{*} = \rho^{*} - \nabla \cdot (\rho^{*}u^{*}) \Delta t,$$

$$F^{q} = -\sum_{l} F_{l}^{q,N_{s}} \Delta V_{l} + \left(1 - \frac{\rho_{f}}{\rho_{p}}\right) M_{p}g + \left(\int_{V_{p}} (\rho u)^{*} dV^{q-1} - \int_{V_{p}} (\rho u)^{**} dV^{\gamma_{q}-1}\right) / [(\alpha_{q} + 1 - \gamma_{q}) \Delta t],$$

$$T^{q} = -\sum_{l} r_{l}^{q-1} \times F_{l}^{q,N_{s}} \Delta V_{l} + \left(\int_{V_{p}} (r \, dV)^{q-1} \times (\rho u)^{*} - \int_{V_{p}} (r \, dV)^{\gamma_{q}-1} \times (\rho u)^{**}\right) / [(\alpha_{q} + 1 - \gamma_{q}) \Delta t],$$

$$s_{c}^{q} = s_{c}^{0} + \sum_{k=1}^{q} \beta_{qk} u_{k}^{k-1} \Delta t,$$

$$p^{q} = p^{0} + \sum_{k=1}^{q} \beta_{qk} r^{k} \Delta t,$$

$$T^{q} = -\sum_{l} r_{l}^{q-1} \times F_{l}^{q,N_{s}} \Delta V_{l} + \left(\int_{V_{p}} (r \, dV)^{q-1} \times (\rho u)^{*} - \int_{V_{p}} (r \, dV)^{\gamma_{q}-1} \times (\rho u)^{**}\right) / [(\alpha_{q} + 1 - \gamma_{q}) \Delta t],$$

$$t^{q} = L^{0} + \sum_{k=1}^{q} \beta_{qk} r^{k} \Delta t,$$

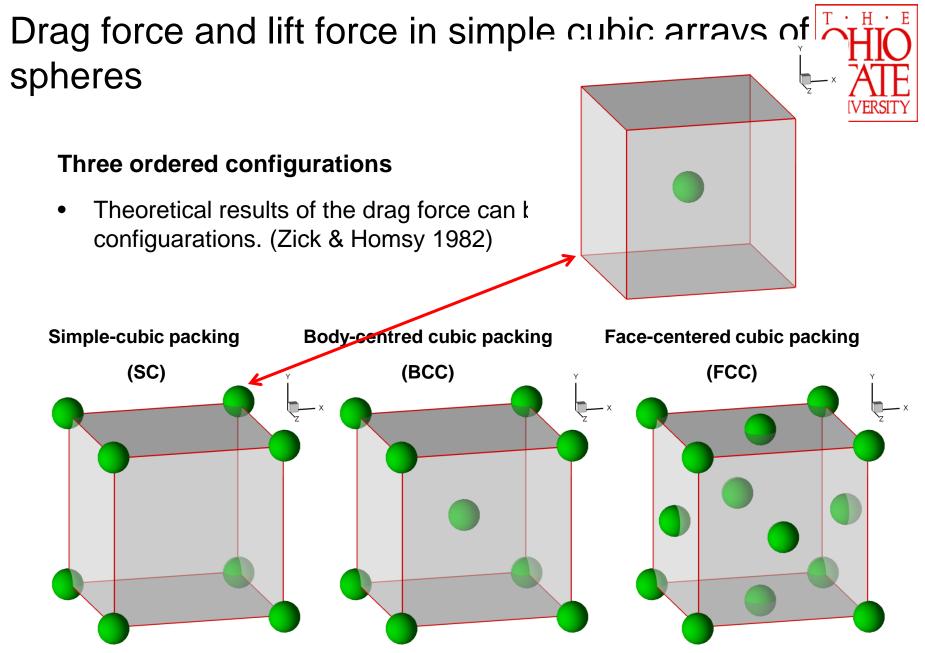
$$T^{q} = -\sum_{l} r_{l}^{q-1} \times F_{l}^{q,N_{s}} \Delta V_{l} + \left(\int_{V_{p}} (r \, dV)^{q-1} \times (\rho u)^{*} - \int_{V_{p}} r^{q-1} \times F_{l}^{q,N_{s}} \Delta V_{l} + \frac{d}{dt} \left(\int_{V_{p}} r \times (\rho u) dV\right)$$

$$\mathbf{Q}^{q} = \mathbf{Q}^{0} + \sum_{k=1}^{q} \beta_{qk} \boldsymbol{\omega}_{c}^{k-1} \mathbf{Q}^{k-1} \Delta t/2$$
$$\mathbf{u}_{c}^{q} = \mathbf{p}^{q} / M_{p},$$
$$\boldsymbol{\omega}_{c}^{q} = \mathbf{I}_{p}^{-1} \mathbf{L}^{q},$$
$$\mathbf{X}_{l}^{q} = \mathbf{x}_{c}^{q} + \mathbf{Q}^{q} \mathbf{X}_{l}^{initial} \widetilde{\mathbf{Q}}^{q} \quad \forall l,$$
$$\mathbf{U}_{p,l}^{q} = \mathbf{u}_{c}^{q} + \boldsymbol{\omega}_{c}^{q} \times (\mathbf{X}_{l}^{q} - \mathbf{x}_{c}^{q}) \quad \forall l,$$

It is demonstrated, through extensive benchmark problems, that the IB-LBM has the capacity to resolve the translational and rotational motion of particles with the second-order accuracy.

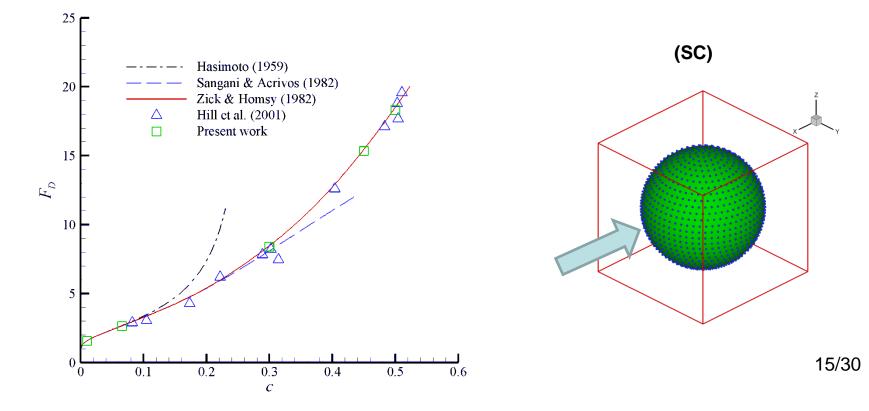
Outline

- Background: high-speed imaging of particle rotation
- Background: Immersed boundary-Lattice Boltzmann
 method, from first order to second order
- Drag force and lift force in simple cubic arrays of spheres
- Drag force and lift force in random arrays of spheres
- Open question, how to apply lift force in practical simulations.



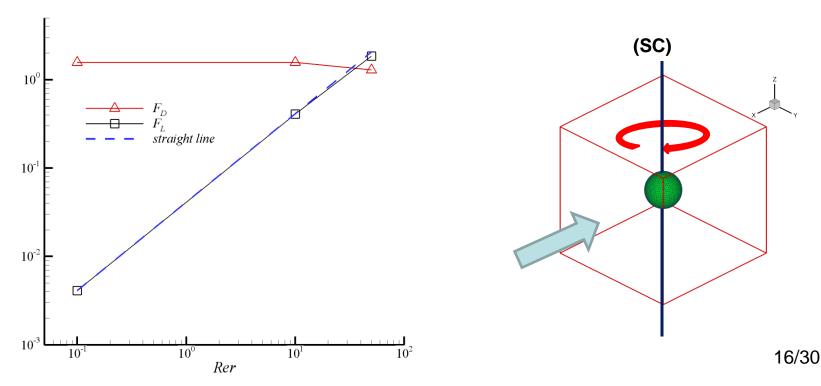
Validation of our simulation

- The drag force at various solid volume fraction (*c*) agree well with theoretical results.
- Position fixed, particle Reynolds number (Rep)<0.2 (effectively zero), flow driven by uniform pressure gradient.



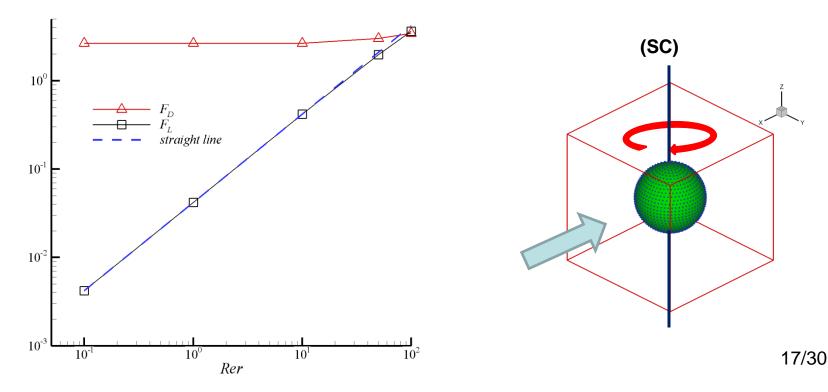
Lift force caused by particle rotation (rotating axis is perpendicular to the flow direction)

• The lift force at various solid volume fraction (*c*).



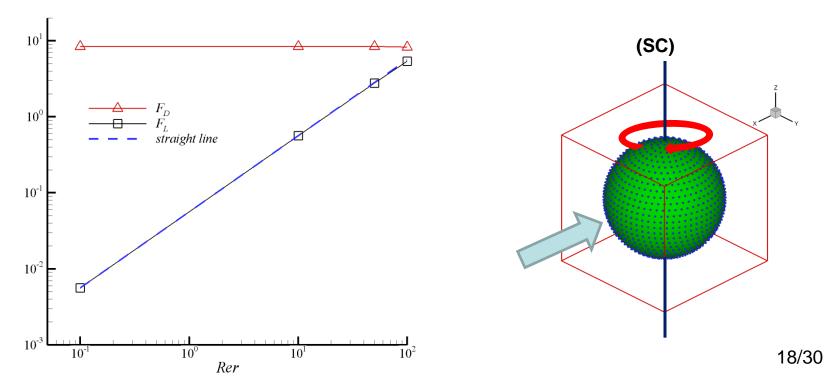
Lift force caused by particle rotation (rotating axis is perpendicular to the flow direction)

• The lift force at various solid volume fraction (*c*).



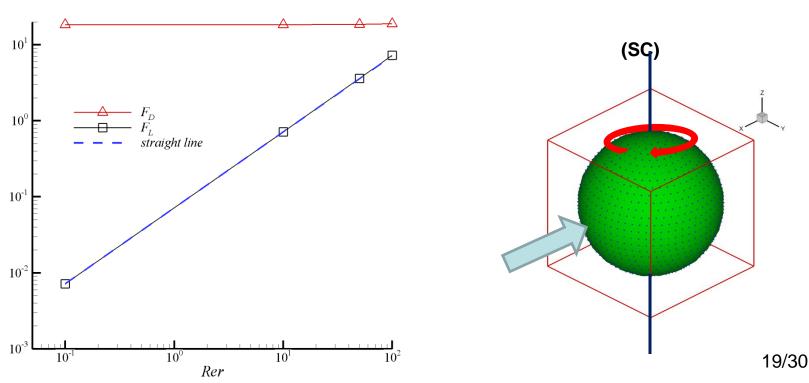
Lift force caused by particle rotation (rotating axis is perpendicular to the flow direction)

• The lift force at various solid volume fraction (*c*).



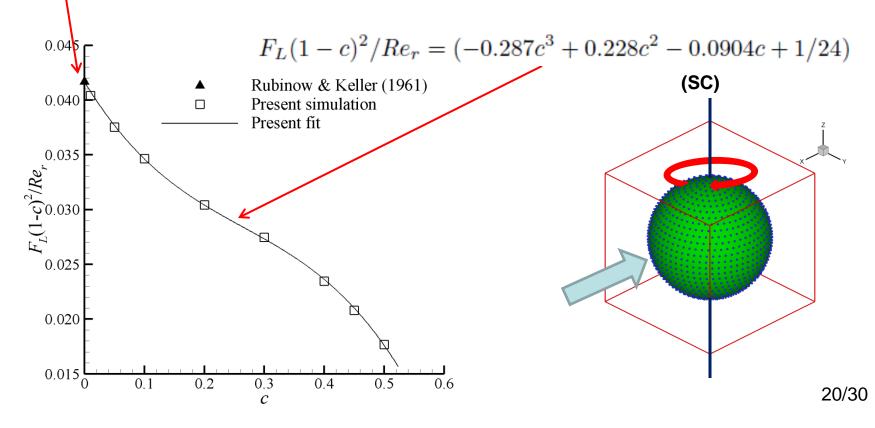
Lift force caused by particle rotation (rotating axis is perpendicular to the flow direction)

• The lift force at various solid volume fraction (*c*).



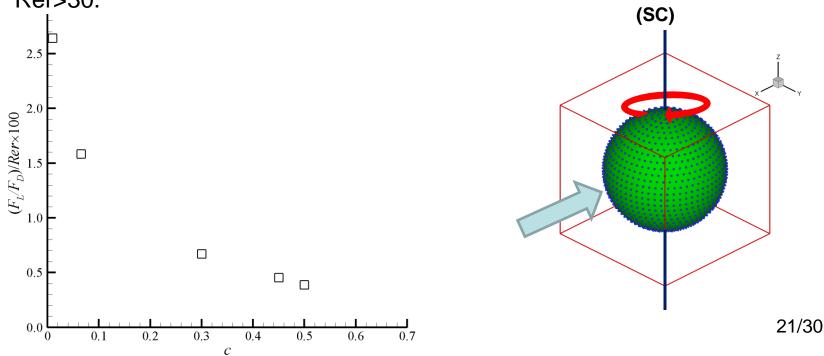
Lift force caused by particle rotation (rotating axis is perpendicular to the flow direction)

 Based on the simulation results and the theoretical value for c→0 (Rubinow & Keller (1961)). The lift force at various solid volume fraction
 (c) can be expressed as(Rer<100)



The ratio of the lift force to the drag force

- *c*=0.01,Rer=1, $F_L/F_D \approx 2.6\%$, Rer=10, $F_L/F_D \approx 26\%$, Rer=100, $F_L/F_D \approx 260\%$
- *c*=0.3, Rer=1, $F_L/F_D \approx 0.67\%$, Rer=10, $F_L/F_D \approx 6.7\%$, Rer=100, $F_L/F_D \approx 67\%$
- *c*=0.5, Rer=1, $F_L/F_D \approx 0.39\%$, Rer=10, $F_L/F_D \approx 3.9\%$, Rer=100, $F_L/F_D \approx 39\%$
- For intermediate and dense system, the lift force became significant when Rer>30.



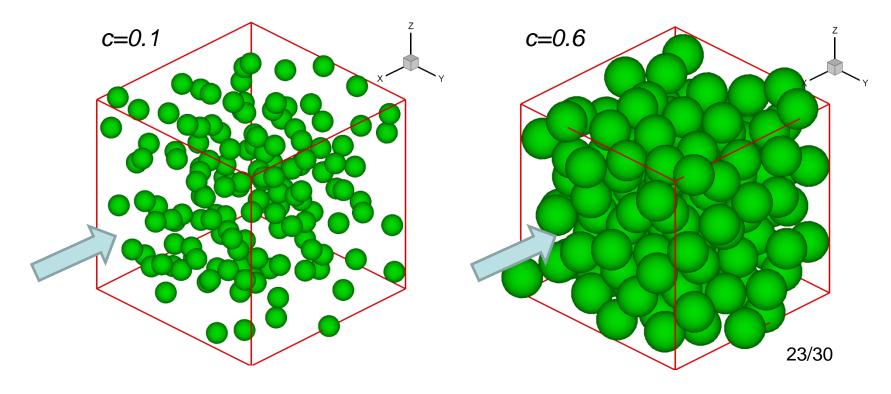
Outline

- Background: Lift force due to particle rotation
- Background: Immersed boundary-Lattice Boltzmann
 method, from first order to second order
- Drag force and lift force in simple cubic arrays of spheres
- Drag force and lift force in random arrays of spheres
- Open question, how to apply lift force in practical simulations.

Drag force and lift force in random arrays of spheres of

Random configuration

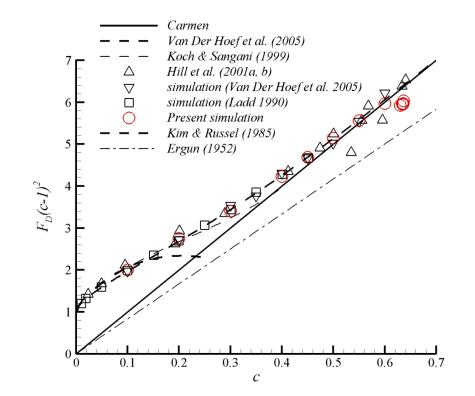
- Random configuration is generated using Zinchenko's method (1994). A standard Monte Carlo procedure may give a crystallized configuration of spheres when c is large.(*the number of particles: 144*)
- Many independent configurations should be simulated to yield accurate results (*usually more than 5*).



Drag force and lift force in random arrays of spheres C

Drag force without particle rotation

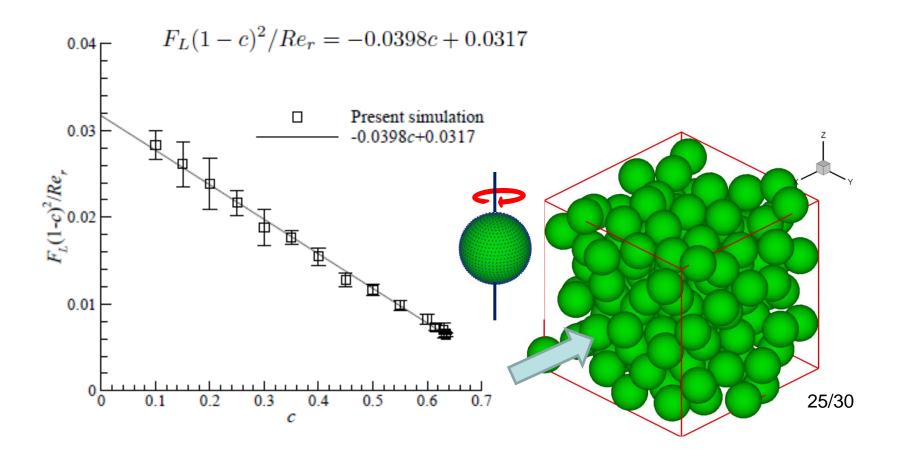
• Agree with previous simulation results as well as the fitting expression proposed by Van Der Hoef et al.(2005)



Drag force and lift force in random arrays of spheres

Drag force and lift force in the presence of particle rotation

- $F_L(1-c)^2/Rer$ is linearly dependent on *c*.
- The drag force does not change appreciably.
- Based on our simulation results:



Drag force and lift force in random arrays of spherical Lift-to-drag ratio

- *c*=0.1,Rer=1, $F_L/F_D \approx 1.5\%$, Rer=10, $F_L/F_D \approx 15\%$, Rer=100, $F_L/F_D \approx 150\%$
- *c*=0.3, Rer=1, $F_L/F_D \approx 0.57\%$, Rer=10, $F_L/F_D \approx 5.7\%$, Rer=100, $F_L/F_D \approx 57\%$
- *c*=0.6, Rer=1, $F_L/F_D \approx 0.15\%$, Rer=10, $F_L/F_D \approx 1.5\%$, Rer=100, $F_L/F_D \approx 15\%$
- For c<0.3, the lift force became significant when Rer>10
- For close packing system, the lift force became significant only when Rer>50

Outline

- Background: Lift force due to particle rotation
- Background: Immersed boundary-Lattice Boltzmann
 method, from first order to second order
- Drag force and lift force in simple cubic arrays of spheres
- Drag force and lift force in random arrays of spheres
- Open question, how to apply lift force in practical simulations.

Open question, how to apply lift force? How to obtain the rotating speed of the particles?

For discrete particle method and computational fluid dynamics (DPM-CFD,DEM-CFD), The lift force can be added readily. (collision models, rotating speeds are resolved.)

For the two-fluid method:

The first approach (Lun 1991; Jenkins & Zhang 2002)

 Typical two-fluid **governing** equations include, conservation equations for mass

translational momentum

translational granular temperature

rotational momentum

rotational granular temperature

The second approach(Lun 1991; Jenkins & Zhang 2002; Sun & Battaglia 2006)

• Do not add additional equations, let the mean rotating speed of spheres be equal to half the vorticity of their mean velocity

Concluding Remarks

- LBM and IBM is coupled through Runge-kutta schemes. The overall accuracy reaches second-order.
- The drag force and the lift force are calculated both in ordered arrays and random arrays. The computed drag force is in good agreement with existing theories and published numerical results. Based on the simulation results, lift laws are proposed for the simple-cubic (SC) configuration and random configuration, respectively.
- It is found that the lift force due to particle rotation can be very significant relative to the magnitude of the drag force when the rotational Reynolds number is relatively large but within the range of the practical gas-solid flow systems.
- The lift force can be applied in discrete particle method (DPM) readily. Two approaches that can include the lift force in two-fluid simulations are discussed.
- Future work: install the new drag law and lift law into MFIX-DEM to simulate some gas-solid problems in real-world reactors.

Acknowledgement

• The work is supported by the U.S. Department of Energy Grant FE0007520.