Exploring the Behavior of Shales as Seals and Storage Reservoirs for CO$_2$

Project Number 90210

Robert Dilmore

NETL ORD, Predictive Geosciences Division
Presentation Outline

• Benefits to Program
• Project Goals and Objectives
• Technical Status
• Accomplishments to Date
• Summary
Technical Scope

Shales as Seals

Shales as Storage Reservoirs

Benefit to the Program

• Carbon Storage Program Goals Addressed:
 – Support industry’s ability to predict CO₂ storage capacity in \((\text{unconventional})\) geologic formations to within \(\pm 30\) percent
 – Ensuring 99 percent storage permanence.

• Project Benefits:
 – Improve understanding of injection/storage performance of unconventional formations
 – Inform efficiency estimation for resource assessment
 – Insights feeding to seal characterization in integrated assessment of risk
Project Overview:
Goals and Objectives

• Project Objectives
 – Evaluate matrix response to CO₂ exposure (sorption, swelling/shrinkage, geochemical interactions)
 – Characterize effective permeability and porosity of shale to CO₂
 – Experimental and simulation-based performance of CO₂ storage in/transport through shale with natural and engineered fractures
 – Reduced order characterization to improve resource estimation and quantitative risk assessment of geologic CO₂ storage
Science Base Feeding to Higher-Level Assessments

Micro-Scale Data Collection (CT, SEM, etc)

Core-Scale Flow and Imaging

Data Conversion & Computational Fluid Dynamics

Gas/liquid flowing in rock fractures

National-Scale Assessment

Well and Field-Scale Simulation

Multiscale Data Analysis

Comparison of Shale Density from CT Scans and Well Logs
CO₂ and CH₄ Sorption capacity as function of %TOC (single-fluid isotherms)

CO₂ Isotherms

CH₄ Isotherms

CO₂ Sorption Mechanisms: Fourier Transform-Infrared Spectroscopy (FT-IR)

15 min CO₂ exposure at 40°C, 0-800 psi

Physically Sorbed CO₂ IR Peaks: 2350-2330 cm⁻¹
CO₂ Sorption on Shale Samples

FT-IR Data:
Area of 2343 cm⁻¹ CO₂ Sorption Peaks

Peak Area vs Pressure for Clay Infrared Spectra at 40°C

- Ca-Smectite
- Illite-Smectite
- Illite
- Kaolinite

Integrated CO₂ peak area is not quantitative

FT-IR Data:
Area of 2331 cm⁻¹ CO₂ Sorption Peaks*

Peak Area vs Pressure of Shale Infrared Spectra at 40°C

TOC-content (wt. %): MS-4 (9.2) > MS-1 (6.5) > US-1 (0.5)

*2343 cm⁻¹ peak not strong enough to obtain reliable area measurements

FT-IR trends compliment results of CO₂ isotherm measurements
Geochemical Model Sensitivity and Caprock Interface

Study Problem: Geochemical calculations rely on uncertain thermodynamic & kinetic databases

Goal: Characterize the mineral precipitation and dissolution processes that are important at brine/aquifer/caprock interfaces.

Finding: The precipitation and dissolution processes for minerals Chlorite, and carbonates Cc, Dol, Ank contribute to autosealing at the brine/aquifer/caprock interfaces.

Source: Balashov, V. N. Brantley, S. L. Guthrie, G. D. Lopano, C. L Hakala, and J. A. Impact of geochemical kinetics at the reservoir/shale interface on long term CO2 storage. Goldschmidt Conference June 8 – 13, 2014
Steady-State Permeameter

Capable of reproducing in-situ net stress, and measuring gas flow under partial liquid saturation

Effective porosity of shale as function of net stress

Effective permeability of shale as function of net stress

Marcellus Shale, Seneca Falls, NY

Image from: Kashiar Aminian; Discussion of PPAL capability at: SPE/DOE 11765, Symposium on Low Permeability Gas Reservoirs, Denver, CO, March 13-16, 1983
Coupling Mechanical Changes of Fractures to Hydraulic Changes

Cycling of confining pressure causes fracture asperities to break down, reducing effective fracture aperture.
Modeling CO₂ Flow in Fractured Geologic Media

FRACGEN stochastically generates fracture networks

NFFLOW models flow in discrete fracture networks

Images from: Sams, N. Overview of NFFLOW & FRACGEN. June 3, 2013
Goal: Develop a robust characterization of site-scale CO$_2$ storage and EGR potential of gas-bearing shale formations

Scenario: Dry gas window, Marcellus, SW PA, Depth of 6,700 ft (~ 2,000 m), gross interval thickness of 120 ft (37 m), 145ºF (63ºC), Initial pressure 4,000 psi (27.6 MPa), matrix permeability 0.1 -1 (μD)

Sensitivity of CO$_2$ storage/EGR performance to:
- Fracture network characteristics
- Matrix CO$_2$ and CH$_4$ sorption characteristics
- Injector/producer distance
- Injection pressure
- Stress-dependent matrix perm.
Representing Fracture Networks

Semi-stochastic fracture network and flow modeling
Modified dual porosity, multiphase, compositional, multidimensional flow model
Discrete Fracture Modeling coupled with conventional reservoir simulation
Semi-stochastic fracture network and flow modeling
Single Lateral CO₂ Storage Scenario

Scenario: Constant pressure at 5000 psi, single lateral

Uncertain Parameters: \(h_{\text{net}}, \Phi_{\text{matrix}}, \Phi_{\text{fracture}}, k_{\text{matrix}}, k_{\text{fracture}}, \) fracture spacing, Langmuir constants

MC with 1000 realizations

<table>
<thead>
<tr>
<th></th>
<th>(P_{90})</th>
<th>(P_{50})</th>
<th>(P_{10})</th>
</tr>
</thead>
<tbody>
<tr>
<td>OGIP (BSCF)</td>
<td>111</td>
<td>138</td>
<td>165</td>
</tr>
<tr>
<td>CH₄ Production over 30 Years (BSCF)</td>
<td>20.1</td>
<td>23.7</td>
<td>27.4</td>
</tr>
<tr>
<td>CO₂ Stored after 30 Years (BSCF)</td>
<td>15.3</td>
<td>16.9</td>
<td>18.5</td>
</tr>
</tbody>
</table>
CO₂ Storage and Enhanced Gas Recovery Scenario

- CO₂ Injection for EGR not expected to start until primary production complete (nominally 40 years)
- Models predict EGR recovery (technical) potential between 0 and 11% (above primary production)
- Time to breakthrough of 10% mole fraction in produced stream decreases significantly as SRV overlap of adjacent laterals increases

Flux through Fractured Seal ROM
NSEALR

- Assumes thin, relatively impermeable, fractured rock unit, initially saturated with a saline water.
- Two-phase, relative permeability approach and 1-D Darcy flow of carbon dioxide through the horizon in the vertical direction
- User defined or stochastically varying permeability, porosity, seal thickness
- Correction for in situ stress on aperture values generated by the fractured rock model, including shear stress options

Accomplishments to Date

– Well/pad-scale characterization of CO$_2$ storage and EGR performance in depleted shale gas formations
– Preliminary experimental characterization of:
 • Shale sorption characteristics
 • Mechanisms of CO$_2$/shale interactions
 • Matrix permeability
 • Fracture flow
 • Pore imaging
– Reduced physics model characterizing flux through fractured seal
– Contributing to methodology for CO$_2$ storage in shale
Summary

– Future Plans

• Understanding shale pore type and structure
• Flow through nanopores on molecular scale
• Importance of pore effects at core-scale
• Matrix swelling/shrinkage effects
• Oil wet versus water wet (black shale vs. gray)
• Liquid and condensate reservoirs
• Simulation refinement and validation
Organization Chart

• NETL Office of Research & Development
 – Predictive Geosciences Division
 – Engineered Natural Systems Division
 – Material Characterization Division

• URS Corp.

• West Virginia University, Penn State University, Carnegie Mellon University
Gantt Chart

Carbon Storage

FWP Number Car Stor_FY14

Schedule and Milestones

<table>
<thead>
<tr>
<th>Task No.</th>
<th>Activity Name (Task/Sub-task)</th>
<th>Start</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Project Management</td>
<td>10/1/13</td>
<td>9/30/14</td>
</tr>
<tr>
<td>1.1</td>
<td>Project Management</td>
<td>10/1/13</td>
<td>9/30/14</td>
</tr>
<tr>
<td>2.0</td>
<td>Reservoir and Seal Performance</td>
<td>10/1/13</td>
<td>9/30/14</td>
</tr>
<tr>
<td>2.1</td>
<td>Impact of CO₂-Brine-Rock Chemistry on Storage Formations and Seals</td>
<td>10/1/13</td>
<td>9/30/14</td>
</tr>
<tr>
<td>2.2</td>
<td>Impact of Microbial Processes on Storage Formations and Seals</td>
<td>10/1/13</td>
<td>9/30/14</td>
</tr>
<tr>
<td>2.3</td>
<td>Impact of CO₂ on Shale Formations as Seals</td>
<td>10/1/13</td>
<td>9/30/14</td>
</tr>
<tr>
<td>2.4</td>
<td>Characterization of Reservoir and Seal Material Performance</td>
<td>10/1/13</td>
<td>9/30/14</td>
</tr>
<tr>
<td>2.5</td>
<td>Understanding of Multiphase Flow for Improved Injectivity and Trapping</td>
<td>10/1/13</td>
<td>9/30/14</td>
</tr>
<tr>
<td>2.6</td>
<td>Geochemical Model Sensitivity at Caprock Interfaces</td>
<td>10/1/13</td>
<td>9/30/14</td>
</tr>
<tr>
<td>3.0</td>
<td>Monitoring Groundwater Impacts</td>
<td>10/1/13</td>
<td>9/30/14</td>
</tr>
<tr>
<td>3.1</td>
<td>Natural Geochemical Signals for Monitoring Groundwater Impacts</td>
<td>10/1/13</td>
<td>9/30/14</td>
</tr>
<tr>
<td>4.0</td>
<td>Resource Assessments and Geospatial Resource</td>
<td>10/1/13</td>
<td>9/30/14</td>
</tr>
<tr>
<td>4.1</td>
<td>Resource Assessments</td>
<td>10/1/13</td>
<td>9/30/14</td>
</tr>
<tr>
<td>4.2</td>
<td>Geospatial Data Management</td>
<td>10/1/13</td>
<td>9/30/14</td>
</tr>
<tr>
<td>5.0</td>
<td>Monitoring CO₂ and Pressure Plume</td>
<td>10/1/13</td>
<td>9/30/14</td>
</tr>
<tr>
<td>5.1</td>
<td>Development of Technology to Monitor CO₂ and Pressure Plume</td>
<td>10/1/13</td>
<td>9/30/14</td>
</tr>
<tr>
<td>6.0</td>
<td>Catalytic Conversion of CO₂ to Industrial Chemicals</td>
<td>10/1/13</td>
<td>9/30/14</td>
</tr>
<tr>
<td>6.1</td>
<td>Catalytic Conversion of CO₂ to Industrial Chemicals</td>
<td>10/1/13</td>
<td>9/30/14</td>
</tr>
</tbody>
</table>

FY14

<table>
<thead>
<tr>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Milestone Summary

- M1.14.2.A
- M1.14.3.A
- M1.14.4.A
- M1.14.5.A
- M1.14.6.A

Page 1 of 1
Coupled Fluid Flow and Geomechanical Modelling

3-D, single phase Finite Element Model to estimate maximum allowable injection pressure without caprock failure.

Ground Deformation
- Maximum computed surface displacements are about 0.07 ft (21.3 mm).
- Can monitor with tiltmeter array.
Related Studies

• Nuttall et al., (2005) – Kentucky Geologic Survey
 – KGS developed the first volumetric estimates of CO\textsubscript{2} storage potential in the Carbonaceous (black) Devonian gas shales that underlie Kentucky, estimating that as much as 28 Gt could be stored there.

• Advanced Resources International (2013)
 – Basin-level assessment of CO\textsubscript{2} and EGR potential, reservoir simulation, novel monitoring, techno-economic assessment

• Tao & Clarens (2013) (U. Virginia)
 – Estimating CO\textsubscript{2} storage in Marcellus shale

• Zobak et al. (Stanford)
 – evaluate physical and chemical interactions between CO\textsubscript{2} and shale, imaging of fluid migration in shale

• Ripepi et al. (Virginia Tech)
 – Simulation and field demonstration in Central Appalachia
(2) Experimental Analysis of CO₂ Storage in Organic-rich Shale

Purpose:
Examine & quantify CO₂ sorption capacity of *individual* clay standards & shale samples
Determine relative roles of kerogen, clay, & clay type in CO₂ storage potential of shales

Analytical work conducted on shale samples and clay standards

<table>
<thead>
<tr>
<th>Sample</th>
<th>Description</th>
<th>He Pycnometry</th>
<th>E-SEM</th>
<th>FT-IR (std)</th>
<th>FT-IR (T&P)</th>
<th>CO₂ Adsorption Isotherms</th>
<th>TOC</th>
<th>XRD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shale Samples</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS-1</td>
<td>Marcellus: Oatka Creek</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>MS-4</td>
<td>Marcellus: Union Springs</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>US-1</td>
<td>Utica: Flat Creek</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Clay Standards</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STx-1</td>
<td>Ca-Smectite</td>
<td>Y</td>
<td>-</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IMt-2</td>
<td>Illite</td>
<td>Y</td>
<td>-</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KGa-1b</td>
<td>Kaolinite</td>
<td>Y</td>
<td>-</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ISCz-1</td>
<td>Illite-Smectite</td>
<td>Y</td>
<td>-</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Talc</td>
<td>control</td>
<td>-</td>
<td>-</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

All clays are natural standards obtained from the Clay Mineral Society

“Y” indicates the procedure has been conducted on the sample
Organic-rich Shale Outcrop Samples

Marcellus - *Union Springs*

Marcellus - *Oatka Creek*

Utica - *Flat Creek*

TOC = 9.20 wt. % (σ 0.60)
TOC = 6.51 wt. % (σ 0.22)
TOC = 0.45 wt. % (σ 0.17)

Quartz + Clay (e.g. illite, chlorite, kaolinite) + Carbonate + Pyrite + Kerogen ± Feldspar
Key Findings: CO₂ Storage in Shale

• Without HF and natural gas production, CO₂ can not be injected
• Storage predominantly as free-phase CO₂ in fractures – low permeability matrix limits amount of matrix available for sorption
• Favorable assumptions about Langmuir characteristics results in only a small increase in storage (sorbed phase)
• Storage ~ 50,000 tonnes per fractured stage
• CO₂ storage is not much greater in injector/producer scenario, and can be less in cases with significantly overlapping SRV
Potential Fluid Leakage Pathways from Unconventional HC Formations (US EPA, 2012)

- Leakage through the annuli of the vertical drilling well
- Leakage through a natural fault
- Leakage through an abandoned well
Representation of Horizontal Wells with Transvers Hydraulic Fractures
Evaluating the potential viability of an Equivalency Network

Equivalent hydraulic fracture representations:
- Maximum cumulative production error between the two representations is within 15%

Discrete transverse fracture representation
Crushed zone representation

Content Contributed by: Turgay Ertekin, Penn State University Department of Energy and Mineral Engineering
NETL ORD Multi-Scale CT Flow and Imaging Facilities

Micro CT Scanner
- Resolution 10^{-6} to 10^{-5} m
- Pore scale

Industrial CT Scanner
- 10^{-6} to 10^{-3} m
- Pore & core scale
- Pressure & flow controls

Medical CT Scanner
- 10^{-4} to 10^{-2} m
- Core scale
- P, T, and flow controls
Effective porosity and permeability of shale to CO_2/CH_4 over range of effective stress, and characterization of hysteresis effects

- Steady-state flow measurement, research quality data
- Capable of running different gases under different pressures, including nitrogen, methane and carbon dioxide.
- Capable of reproducing in-situ net stress, and measuring gas flow under partial liquid saturation.
- Can also measure pore volume to gas, adsorption isotherms and PV compressibility using N_2, CH_4 or CO_2
- Uses stable gas pressure as a reference for flow measurement
 - Temperature controlled
 - Stable to one part in 500,000
 - Target flow measurement is 10^{-6} standard cm3 per second

Image from: Kashiar Aminian; Discussion of PPAL capability at: SPE/DOE 11765, Symposium on Low Permeability Gas Reservoirs, Denver, CO, March 13-16, 1983
Linked SRM-Economic Screening Tool
Modeling Approach

Field Properties
- Site location/properties
- Well/Completion details
- TOC

Flood Scenario Definition
- Configuration of well pad (# laterals/adjacency)
- Injection Schedule

Scenario Technical Performance
CO₂ injectivity over time, bottomhole pressure over time, produced gas rate/composition over time

Calculate Mass of CO₂ stored through flood

Financial Parameters
- CO₂ storage / NG value
- Electricity cost
- Interest rate
- Debt/equity ratio

Operational Parameters
- Source/sink distance
- Pipeline pressure
- Workover frequency

Economic Screening Model

Dynamic link library

Scenario Economic Performance
Cumulative Probability
UTC of Storage ($/tonne Stored CO₂)
CO₂–Clay Interactions: FT-IR Spectroscopy*

Chemically Sorbed CO₂ IR Peaks: 1400, 830, 720 cm⁻¹

*measured at 40°C
No changes observed in IR spectra with addition of CO₂ and pressure
CO$_2$–Clay Interactions: FT-IR Spectroscopy:

Chemically Sorbed CO$_2$ IR Peaks: 1400, 830, 720 cm$^{-1}$

Clay Standards at 0 and 800 psi CO$_2$

Absorbance

Wavenumber (cm$^{-1}$)

*measured at 40°C
CO₂ Sorption on Shale Samples

CO₂ Sorption Isotherms:
All Isotherm Data: 0-220 psi at -25, -15 & 0°C

FT-IR Data:
Area of 2331 cm⁻¹ CO₂ Sorption Peaks*

CO₂ Sorption Isotherms vs Relative Pressure for Shale Samples at -25°C

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sorbed CO₂ (cm³/g)</th>
<th>P/P₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-4</td>
<td>7.2 (± 0.5)</td>
<td>0.8</td>
</tr>
<tr>
<td>US-1</td>
<td>1.7 (± 0.6)</td>
<td></td>
</tr>
<tr>
<td>MS-1</td>
<td>1.5 (± 0.6)</td>
<td></td>
</tr>
</tbody>
</table>

MS-4 > US-1 ≥ MS-1

Peak Area vs Pressure of Shale Infrared Spectra at 40°C

<table>
<thead>
<tr>
<th>Sample</th>
<th>Peak Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-4</td>
<td>0.20</td>
</tr>
<tr>
<td>MS-1</td>
<td>0.18</td>
</tr>
<tr>
<td>US-1</td>
<td>0.16</td>
</tr>
</tbody>
</table>

*2343 cm⁻¹ peak not strong enough to obtain reliable area measurements

TOC-content (wt. %): MS-4 (9.2) > MS-1 (6.5) > US-1 (0.5)
CO₂ Sorption on Clay Standards

CO₂ Sorption Isotherms:
All Isotherm Data: 0-220 psi at -25, -15 & 0°C

FT-IR Data:
Area of 2343 cm⁻¹ CO₂ Sorption Peaks

FT-IR trends compliment results of CO₂ isotherm measurements.
Experimental Analysis of CO$_2$ Storage in Organic-rich Shale

Results:

(1). Smectite > Illite-Smectite > MS-4 ≥ Illite ≥ Kaolinite > US-1 ≥ MS-1

Summary of CO$_2$ Sorption Isotherm Data at 0.8 P/P$_0$ & -25°C

<table>
<thead>
<tr>
<th>Sample</th>
<th>Smectite</th>
<th>Illite-Smectite</th>
<th>MS-4</th>
<th>Illite</th>
<th>Kaolinite</th>
<th>US-1</th>
<th>MS-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm3/g</td>
<td>36.5</td>
<td>18.5</td>
<td>7.2</td>
<td>5.7</td>
<td>5.6</td>
<td>1.7</td>
<td>1.5</td>
</tr>
<tr>
<td>error +/-</td>
<td>1.3</td>
<td>0.5</td>
<td>0.5</td>
<td>0.6</td>
<td>1.0</td>
<td>0.6</td>
<td>0.6</td>
</tr>
</tbody>
</table>

(2). Two CO$_2$ sorption peaks observed at 2343 and 2331 cm$^{-1}$ on IR spectra of the shale samples (possibly also clays)

(3). No changes were observed in the IR spectra of clays or shales after 15 min of exposure to CO$_2$ at pressures between 0-800 psi and 40°C.

Interpretations:

(1). Shale formations with high smectite, illite-smectite, and/or high TOC-content may have high CO$_2$ storage potential (e.g. Busch et al., 2008; Busch et al., 2009; Ross and Bustin, 2009)

(2). There may be two CO$_2$ sorption sites in shales & clays: in the interlayer* of clay structures & in the interpore space of minerals & kerogen. (*e.g. Rother et al., 2012; Geisting et al., 2012; Loring et al., 2012)

(3). At experimental conditions, exposure to CO$_2$ does not induce chemical changes in clays & shales of these compositions
Field: 77 wells, 652 stages, and 1893 clusters

Representative "Qualified Site"
CO₂ Storage in Depleted Shale combining conventional/ML-based reservoir modeling

- Acquire real-time gas production from a set of shale gas wells
- Use that set of data to develop population statistics
- Develop a history-matched model of shale gas production (29 month production history) using a conventional reservoir model
- Project forward to economic limit before initiating CO₂ injection
- Develop a surrogate reservoir model based on the history matched model to predict wellpad performance under CO₂ loading

Field: 77 wells, 652 stages and 1893 clusters

Representative “Qualified Site”

Content Contributed by: Shahab Mohaghegh, West Virginia University Department of Petroleum & Natural Gas Engineering
CO₂ and CH₄ Sorption capacity as function of %TOC (single-fluid isotherms)

- Sorption capacity of CO₂ and CH₄ exhibit linear relationship with TOC