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Presentation Outline
Oxy-fuel Combustion Components Relative to a Future MHD Concept

» Advanced Combustion Systems (ACS) Goals
o Current ACS Technology Approaches

e ACS Unit Operators Relevant to MHD - Performance and
Cost

e Summary/Conclusions
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Clean Coal Research Program Goals
Driving Down the COE and Cost of Coal Power CCS

Cost of Electricity Reduction Targets Corresponding Cost of CO, Capture Targets
110 - 70 -

0% Reduction ~60

100 +

[o2]
o
L

©

=
1

ul

o
1

20%
Reduction

(o)
o
1

>20%
Reduction

-
)
L
w
o
L

Cost of Capture, 2011$/tonne CO,
S
o

COE Relative to Today's IGCC with Capture, %

60 20 A
50 - 10 4
40 - 0 o
IGCC or 2nd-Generation Transformational IGCC or 2nd-Generation Transformational
Supercritical PC Technology Technology Supercritical PC Technology Technology

Goals shown are for greenfield plants. Costs are for nth-of-a-kind plants, during first year of plant operation, and include compression to 2215 psia but exclude CO, transport and storage costs.
Today's capture costs are relative to Today's SCPC without CO, capture. 2020 and 2030 capture costs are relative to an A-USC PC without CO, capture.
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R&D Driving Down the Cost of CO, Capture
Oxy-combustion Plants

Cost of Capture, 2011 $/tonne CO,
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Active ACS Projects

Oxy-fuel Pressurized Combustion

Oxy-Fired Pressurized Fluidized Bed Combustor, Aerojet Rocketdyne
Staged, High-Pressure Oxy-Combustion, Washington University in St. Louis
OTM for Industrial Applications, Praxair, Inc.

Chemical Looping Combustion

Limestone Chemical Looping Combustion, Alstom Power
Iron-Based Coal Direct Chemical Looping, Babcock & Wilcox Power Group
ICMI Chemical Looping Combustion, NETL-ORD

Recuperators for SCO2 Power Cycles

Low-Cost Recuperative HX for SCO2 Systems (Altex Tech. Corp)
Mfg. Process for Low-Cost HX Applications (Brayton Energy)
Microchannel HX for FE SCO2 cycles (Oregon State U)

HT HX for Systems with Large Pressure Differentials (Thar Energy)
Thin Film Primary Surface HX for Advanced Power Cycles (SwRI)
HX for SCO2 Waste Heat Recovery (Echogen / PNNL, SBIR)
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Advanced Combustion Systems
Current Project Portfolio

Participant Project Scale TRL FY14 FY15 FY16 FY17

Chemical Looping Combustion Projects

Calcium-Based Limestone

ASIL Chemical Looping Combustion 1 MWe 4
Babcock & Wilcox Iron-I_Based Coal Direct Chemical 100 KWih 3
Looping

NETL-ORD ICMI — Chemical Looping 50 kWe 4

Oxy-combustion Projects

Pressurized Oxy-PFBC
Development

Washington Staged Pulverized Coal Oxy-
University in St. Louis | combustion
Oxygen Transport Membrane
(OTM) for Industrial Applications

Aerojet Rocketdyne 1-3 MWth 3

100 kWth 3

Praxair 160,000 scfd 4

1
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Pressurized Oxy-Combustion
Avoid back end separation while taking advantage of pressurization

Advantages of Pressurized Oxy-combustion: R&D Challenges
In pressurized oxy-combustion, the mass and @ Pressurized Combustor Design
volume of flue gas are reduced relative to atm.
combustion in air:
@ Latent heat recoverable and heat transfer rates @ Emissions Control

@ Fuel Feeding

Increased... increases efficiency @ Heat Recovery & Integration
@ Reduces equipment size...decreases capital
costs

@ No air in-leakage... increases CO, purity
@ Developer’s projected CO, capture costs exceed
program goals

Two (current) Approaches
@ Oxy-fired Pressurized Fluidized Bed Combustion (Oxy-PFBC) — Aerojet Rocketdyne
@ Staged Pressurized Oxy-Combustion (SPOC) — Washington University in St. Louis
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Pressurized Oxy-Combustion
Oxy-fuel Pressurized Fluidized Bed Combustion — Aerojet Rocketdyne
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@ Staged combustion with elutriation — Reduces O,
consumption, with high sulfur capture
@ Oxy-combustion — Reduces energy required for CO,

@ PFBC — More compact
combustor with lower cost

e . @ Simpler, lower-cost CPU
purification S

@ Pressurized — Reduces CO, compression required for @ Elimination of FGD
sequestration (Potentially)
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Pressurized Oxy-Combustion
Staged, Pressurized Oxy-Combustion — Washington University in St. Louls
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Staged Combustion Strategy
@ Fuel-staged combustion to manage peak combustion temperatures
@ Excess oxygen acts as the diluent rather than recycle
@ Near-zero flue gas recycle
@ Reduced flue gas volume, equipment size, and system cost
@ Novel direct contact cooler combines latent heat recovery with SOx and NOx
removal
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Coal/Natural Gas-Fired MHD System
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Coal/Natural Gas-Fired MHD System
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Oxygen Production

Current Oxy-combustion Plant

(550 Mw,,, Supercritical, Atmospheric Pressure, Current Cryogenic ASU)

O, Demand 14,000 tpd

(12,700 tonne per day)
O, Purity 95%
ASU Capital Cost $410M

(20% of total plant cost)

Aux Power Load 96 MW,
(41% of auxiliaries)

Cost of Oxygen? $37 per ton O,

10, cost per ton is highly dependent on the price of electricity used since the cost is heavily
dependent on the power required to run the ASU. Using the NETL Bituminous Baseline Case 13
NGCC plant without capture cost of electricity ($60/MWh), a cost of about $25 per ton O, would
be reasonable. If the power cost from the oxy-combustion plant was used ($142/MWh), the O,
cost would go up to about $37 per ton O,

Source: “Advanced Oxy-combustion Technology for Pulverized Bituminous Coal Power Plants”, NETL, 2014, P
Unpublished N=TL



Oxygen Production Improvements

ASU Improvements
@ Approx. 20% reduction in energy
requirements

260
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160— Integration beneft
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The reduction in air separation energy (kWh/t) over time in Air
Liquide ASU

Source: Reprinted from “Developments in oxyfuel combustion of coal,” by Toby Lockwood,

2014, p. 40. Copyright 2014 by the IEA Clean Coal Centre.
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lon Transport Membrane (ITM)

Air Products and Chemicals, Inc. (APCI)

o Supported thin-film, ceramic planar
devices

» Fast, solid state electrochemical
transport of oxygen

e Pressure-driven; compact

Oxygen flowing from
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Coal/Natural Gas-Fired MHD System
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CO, Compression and Purification

Oxy-fuel combustion of coal produces a flue gas
containing:
e CO,+H,0
« Any inerts from air in leakage or oxygen impurities
 Oxidation products and impurities from the fuel (SOx, NOx, HCI,
Hg, etc.)
Purification requires:
« Cooling to remove water
e Low Temperature Purification
e Low purity-> bulk inerts removal
 High purity-> Oxygen/CO removal
o Compression to pipeline pressure (~2200 psi)
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CO, Compression & Purity Requirements

 Compressed to 2200 psi for transport and storage

Primary
concerns
for oxy-fuel
combustion
systems
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e Minimum 95% CO, content
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Conventional CO, Processing Unit (CPU
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Oxy-combustion with Advanced CPU

@ Potential to integrate SOx, NOx, Hg, and inerts

removal into CPU unit operation
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Coal/Natural Gas-Fired MHD System
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Summary of Unit Operation Status

« Commercially available
— Coal processing
— Steam turbine
— Economizer
— CO, Compressor
— Power electronics

e Current R&D in AES CCRP Programs

— Advanced oxygen production (oxygen membrane)
— Advanced CPU

« Subsequent to the FE Crosscutting Team and MHD
community establishing a path forward

— Areas for potential R&D to support MHD
* MHD channel / diffuser
e Combustor & coal feeding
 Boiler/afterburner/HRSG
 Electrostatic precipitator
 Seed recovery/processing
N=TL



Summary and Conclusion
Oxy-fuel Combustion Relative to a Future MHD Concept

« Advanced combustion goals presented targeting ACS with
affordable COE and CCS at less than $40 / tonne

« ACS projects in place supporting oxy-fuel combustion, CLC
and SCO2 power cycles (in part)

e Current AES R&D relevant to MHD: ASU & CPU

 Areas for potential R&D to support MHD
— MHD channel / diffuser
— Combustor & coal feeding
— Boiler/afterburner/HRSG
— Electrostatic precipitator
— Seed recovery/processing

e Next steps: R&D community needs to validate performance

of MHD channel / components & system analysis to validate
performance in terms of COE and CCS
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