

Magnetohydrodynamics Power Generation Workshop

October 1, 2014

Dr. Darren J. Mollot Director, Advanced Fossil Technology Systems Office of Fossil Energy U.S. Department of Energy

IEA CCS Roadmap 2013: Key Technologies for Reducing Global CO₂ Emissions

Lower Cost Carbon Capture is Required to Meet GHG Goal

Source: IEA Roadmap 2013.

Note: Numbers in brackets are shares in 2050. For example, 14% is the share of CCS in cumulative emission reductions through 2050, and 17% is the share of CCS in emission reductions in 2050, compared with the 6DS.

DOE Office of Fossil Energy Clean Coal Program

DOE/FE's Clean Coal and CCS Mission

Success of the demos

- Serial # 1 in operation 2013-2018
- A deep and rich set of public learning

R&D – Making CCS technology widely adopted

- Intrinsic Capture of CO2 e.g. Advanced combustion
- Dramatic reductions in size, reliability, and cost
- Ensure storage is safe and permanent

New mode: delivering solutions

Integrated Fossil Energy Solutions

□ Gasification

Turbines

Advanced Combustion Pressurized \Box O₂ membrane Chemical □ Supercritical CO₂ Direct Power Extraction looping USC Materials Efficiencies > 45%↓ Capital Cost by 50% \$10 - \$40/tonne CO₂ Captured 5 MWE Oxycombustion Pilot Near-zero GHGs Advanced CO₂ Capture Near-zero criteria pollutants and Compression Near-zero water usage

Fossil

Energy

U.S. DEPARTMENT OF

ENERG

□ Solvents

Sorbents

Membranes Hybrid

□ Process Intensification

Cryogenic Capture

Carbon Utilization (EOR) □ Infrastructure (RCSPs Geological Storage Monitoring, Verification and Accounting

Advanced Energy

Systems

Advanced Turbines

CO₂ Storage

A technology pipeline for affordable CCS

We need more 2nd generation pilots!

Why Take a Fresh Look at MHD? What has changed in 25 years

Legacy MHD program	Today	Comments
No CO ₂ capture	CO ₂ Capture	Oxy-fuel combustion developed for capture enables MHD.
Large demos	Simulation & validation	Validated models for different generator concepts, not demos.
Pre-heated air	Efficient oxygen production	ASU power requirements have dropped 40% since 1990.
SOx and NOx control	Capture GPU	No emissions! Use oxy-fuel gas processing unit (GPU).
Magnets < 6 Tesla	Magnets > 6 Tesla	Advanced magnets exist today.
Analog electronics	Solid-state inverters/control	Electrode arcing could be controlled with digital devices.
Linear generator	Radial, Linear, others	Simulations can compare multiple geometries.
Conventional manufacturing	Advanced manufacturing	New channel construction approaches.
Seeded flows	New goal: injected plasma	Aspirational – use nanosecond pulse discharge to ionize gas ?
U.S. DEPARTMENT OF FOSSIL ENERGY Energy		7

Why This Workshop is Important

- Get current status of technology
- Understand some over arching issues
- Identify synergies with current program e.g.
 O2 separation, simulation tools
- Fuel Collaboration need to bring best minds together

Next Steps: Crawl/Walk/Run

- SOTA Summarize what was learn at workshop
- Assess potential to meet efficiency and CCS goals
- Develop a program plan with path forward.

