Sorbent Based Post- Combustion CO₂ Slipstream Testing Project # DE-FE0012870

Jeannine Elliott Girish Srinivas Bob Copeland

2014 NETL CO₂ Capture Technology Meeting July 29, 2014

TDA Research Inc. • Wheat Ridge, CO 80033 • www.tda.com

DoE Project DE-FE0012870

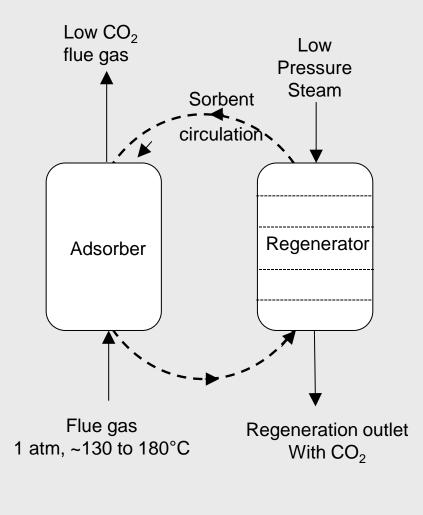
Funding - Total Project \$5,880,378

- DOE: \$4,704,509
- Cost Share: \$1,175,868

Project Dates

• April 1, 2014 to December 31, 2017

Technology Background & Approach


TDA's Approach

- TDA Research has developed:
 - A solid alkalized alumina adsorbent, and

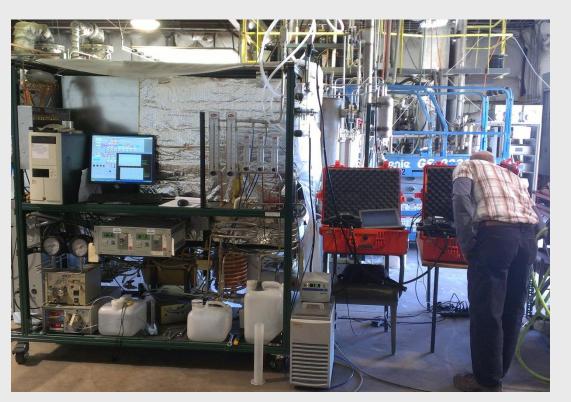
•

An CO₂ capture process designed around this process

TDA's Post Combustion CO₂ Capture

- Process advantages:
 - An inexpensive, durable sorbent
 - Regenerates with low pressure
 - steam
 - Operates at near isothermal conditions
 - Does not require heat recovery from solids
 - Extremely low heat of adsorption
 - Uses counter-current operation to:
 - Maximize capture efficiency
 - Maximize sorbent loading

Process Design


- Multiple Fixed Bed Contactor
 - Provides counter-flow contact between the solids and gases
- Beds cycle between adsorption and regeneration functions
- Gas flows in series across regeneration beds
- Multiple fixed beds are flexible and can allow demonstration of multiple process design configuration.

Continuous Operation

- Demonstrated continuous CO₂ capture in 8 bed bench-scale unit in field testing with coal gas at Western Research Institute
- Slipstream project builds on previous DoE funded research
 - Contract #DE-NT0005497

Testing of 8 bed apparatus at Western Research Institute

Slipstream Testing

- Project Goal: Demonstrate TDA's sorbent technology under realistic conditions at 0.5 MW_e (~10 tpd) scale to collected data necessary for scale up to next level plant.
- Design, construction, and operation of slipstream test unit to capture CO₂ from flue gas at the National Carbon Capture Center (NCCC)

Project Scope

Project Schedule

- Budget Period 1: Design
 - April 2014 to June 2015
- Budget Period 2: Construction & Installation
 - July 2015 to Sept 2016
- Budget Period 3: Operation
 - Oct 2016 to Dec 2017

Budget Period 1

Budget Period 1 Schedule

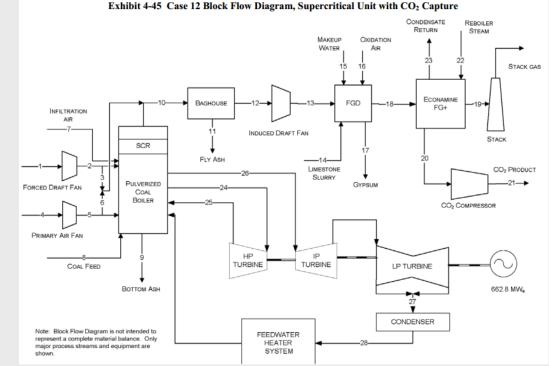
		2014										2015						
ID	Task Name	Start	Finish	Apri	Мау	Jun	July	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Marc	April	May	Jun
1	Task 1. Project Management	4/1/2014	6/1/2017		•													
2	Milestone 1-1: PMP	5/1/2013	5/15/2013		•													
3	Milestone 1-2: Kick-off Meeting	5/20/2014	5/20/2014		•													
4	Task 2. Preliminary TEA Case 1-4	4/1/2013	11/15/2014															
5	Milestone 2-1: Preliminary TEA Case 1	7/1/2014	7/1/2014				•											
6	Task 3.1. Determine Optimal Flow Pattern	3/15/2013	9/15/2014						-									
7	Task 3.2. Basic Process Specific. & Design	5/1/2013	11/1/2014							•			∎⊷					
8	Task 4.1 Pilot Plant Detailed Engineering	11/15/2014	5/1/2014															
9	Task 4.2 EH&S Assessment	1/1/2015	3/31/2015															
10	Milestone 4-1: Pilot Unit design	5/15/2015	5/15/2014														♦	
11	Task 5. Determine Construction Cost	5/2/2015	6/15/2015													L		
12	Milestone 5-1: Submit Design Package	6/30/2015	6/30/2015															
13	Milestone 5-2: Year 1 Annual Review	6/30/2015	6/30/2015															
14	Go/No go Decision Point		7/1/2015															

Budget Period 1 Tasks

- Task 1: Project Management
- Task 2: Preliminary Techno-Economic Analysis
 - Based on integration with a nominal 550 MW_e greenfield supercritical plant
- Task 3. Pilot Plant Design Optimization and Basis Design
 - Process experiments to finalize process design
 - Basic process specification and design

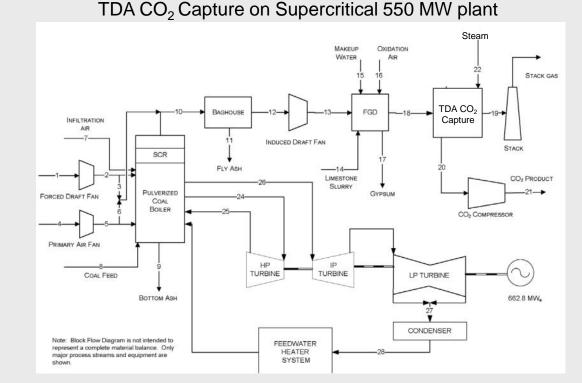
Task 4. Pilot Plant Detailed Design and Engineering

- Design a 0.5 MW_e pilot plant to capture 10 tons per day of CO₂,
- Perform an initial Environmental, Health and Safety (EH&S) study
- Hazard Review with NCCC


Task 5. Determine Slipstream Unit Construction Cost

- Develop a firm cost estimate for the slipstream unit

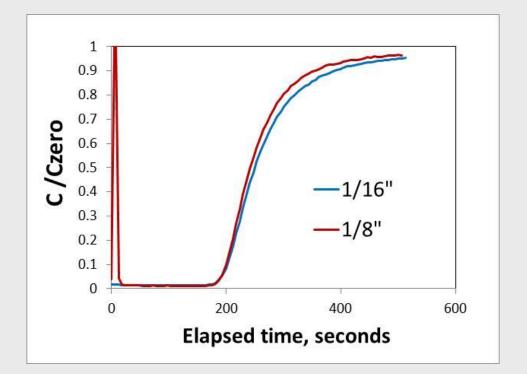
Preliminary Techno-Economic Analysis


- Integration with greenfield supercritical 550 MW coal fired power plant
 - Cost and Performance Baseline for Fossil Energy Plants (Black 2010) Case 12
 - Analysis will follow DoE guidelines
- Work being performed by University of California at Irvine (UCI)

Economic Analysis

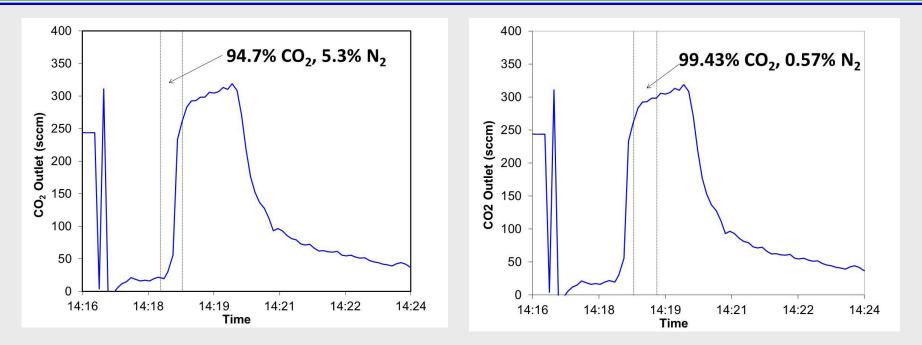
- Total of four cases will be studied as part of the TEA
 - Baseline Case 1 run initially
 - Three additional cases will be evaluated for optimization
- TEA economic analysis is underway

Research


15

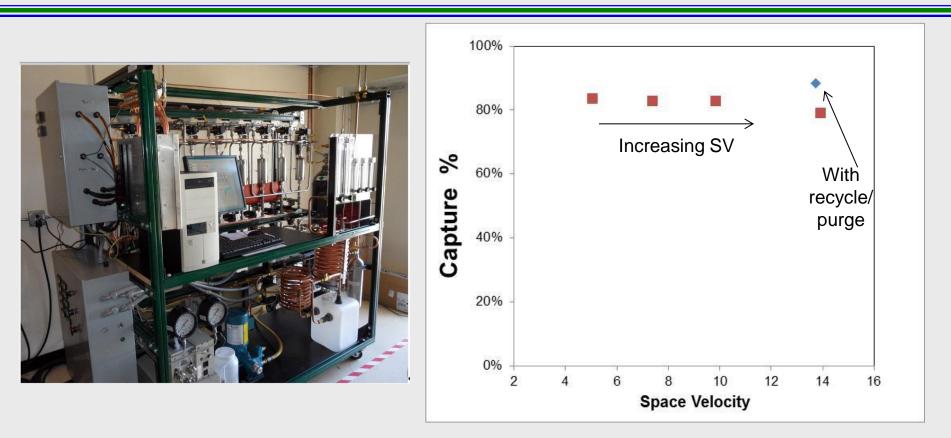
Slip Unit Design Data

- Collect experimental data needed to design pilot plant unit
- Characterize breakthrough performance and pressure drop considerizations
 - Evaluate different pellets sizes
- Conduct process optimization in bench-scale unit to determine optimum flow/cycling logic for pilot plant


Effect of Pellet Size

- Breakthrough curves measured for two different sized pellets
 - Maintained same space velocity
- No loss in performance with 1/8" pellet size compared to 1/16" pellets

CO₂ Product Purity

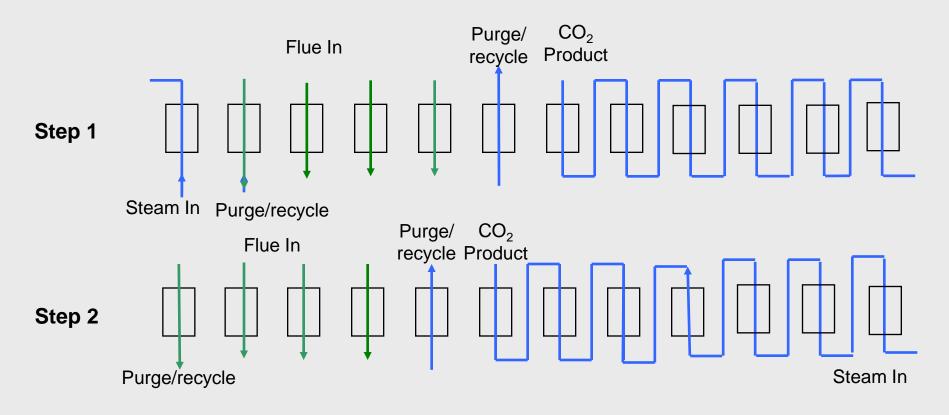


Evaluated of composition of regeneration product gas

- Measured by GC
- Average CO₂ out meets 95% purity standard

Kinetic Studies

- Performance as a function of space velocity
 - Future studies to evaluate regeneration and adsorption side separately



Process Design Optimization

- Underway to modify existing bench-scale unit to mimic design to be constructed
- New system will have additional dedicated beds for purge between adsorption and regeneration steps
- Collect data to evaluate trade-off of adding beds and performance recycles/purge steps

Slipstream Unit Test System

- Adsorption, regeneration and purge beds
- Each stage operates for a full cycle
 - Current unit has some stages operating for a fraction of a cycle

Slipstream Unit Design

- 0.5 MW_e Skid mounted system
- Adsorber/Regeneration Contractor is a multiple fixed bed unit
 - Beds switch between adsorption, regeneration, purge operations
- Sorbent is regenerated by steam
- Adsorber/Regenerator operates near isothermal (adiabatically) at 140 to 160°C with about 17 psia steam
- Operation pressure is near atmospheric pressure
- Slipstream unit includes adsorber/regeneration beds, heat exchangers, blower

Pilot Plant Engineering Design

- Budget Period 1 will determine cost to construct Slipstream Unit
 - Final Process Flow Diagram, General Arrangement Sketch, Elevation Sketch
- Hazard analysis to be conducted per NCCC requirements
- Estimated CO₂ delivery conditions: pressure, temperature, flow rate, and gas composition
- Startup, steady-state operation, and shut-down procedures
- Sorbent disposal plan
 - to be disposed of by NCCC

Budget Periods 2 & 3

Budget Period 2 July 2015 to Sept 2016

- Scale-up production of the sorbent
- QA/QC testing of sorbent at TDA
- Fabricate the sorbent bed vessels for the pilot plant and other modules
- Finalize Test Plan
 - Operating conditions and key parameter parametric conditions selected
 - Operator training
- Integrate the unit at the NCCC.

Budget Period 3 Tasks

Budget Period 3 Oct 2016 to Dec 2017

- Demonstrate this process in slipstream testing at the NCCC under both parametric and steady state conditions using coal derived flue gas.
- Update the Techno-Economic Analysis and finalize the EH&S assessment.
- Data from the pilot plant test will be used to develop recommendations for the next level of scale up

Summary

- Slipstream testing will assess and demonstrate technical viability of this CO₂ capture approach
- 0.5 MW slipstream testing at NCCC
- Technical Experimental work in progress to design optimal slipstream unit
- Initial TEA in in progress

TDA Research Inc. Privately Owned/Began operations in 1987 80 Full-time technical staff Located just west of Denver, CO

