Advanced Enzyme-Catalyzed CO$_2$ Capture in Low-Energy Solvents

Alex Zaks, Ph.D.

2012 NETL CO$_2$ Capture Technology Meeting
Pittsburgh, PA
July 9-12, 2012
• **Acknowledgement**: This material is based upon work supported by the Department of Energy National Energy Technology Laboratory under Award Number DE-FE0004228.

• **Disclaimer**: This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency.
AKERMIN, INC.

• St. Louis-based biotechnology company
• Developing next generation cost and energy efficient, environmentally benign systems for CO₂ capture
• Technology based on integrating an enzyme within a proprietary biocatalyst delivery system which permits:
 • Use of low energy solutions of carbonates
 • Incorporation into a traditional chemical absorption process
PROJECT OVERVIEW

• Project participants

• Project duration: 33 months (initiated in October 2010)

• Funding
 Total Project: $4,749,469
 DOE Funding: $2,909,678
 Akermin Cost share: $1,839,791
PROJECT OBJECTIVES

• Engineer Bench-Scale Carbon Capture System
 — ~5 kWe (500 SLPM flue gas)

• Demonstrate 90% CO₂ capture from flue gas in a bench-scale unit in the presence of biocatalyst and potassium carbonate

• Characterize rate enhancement of biocatalyst

• Demonstrate tolerance to flue gas impurities

• Evaluate impact of external conditions on process performance

• Demonstrate CO₂ capture on flue gas for duration of 6 months

• Generate process data to further refine simulation models

• Model and evaluate the capital and operational costs for full-scale coal-fired power plant
CARBONIC ANHYDRASE

• CA accelerates hydration of CO₂ to bicarbonate:

 \[
 \text{CO}_2 + \text{H}_2\text{O} \xrightarrow{\text{CA}} \text{HCO}_3^- + \text{H}^+
 \]

• Akermin explored numerous CAs for CO₂ capture
• CA developed by Novozymes is top candidate
 – Highly active
 – Resistant to major impurities in flue gas
 – Thermostable
 – Resistant to high pH (9.5-10.5)
 – High expression level, few impurities

Active site of CA

\[k_{\text{cat}} = 10^6/\text{sec}\]
TECHNOLOGY FUNDAMENTALS

Basic unit design for CO₂ capture incorporating biocatalyst

Biocatalyst delivery system

- FLUE GAS
- 45 °C ABSORBER
- **K₂CO₃/KHCO₃ lean solution**
- ID FAN
- PUMP

105 °C STRIPPER

- VAPOR
- LIQUID
- **“LEAN**

CONDENSER

- ADVANCED CO₂ COMPRESSION

PRODUCT CO₂

PRODUCT GAS

- STEAM
- CONDENSATE

Akermin Inc. (2011)
THERMOSTABILITY OF FREE CARBONIC ANHYDRASE

Room Temp. 40 °C 50 °C 60 °C 70 °C 80 °C

0.5 M K₂CO₃/0.5 M KHCO₃, pH 10.0

T₁/₂ ~ 110 days at 40 °C
T₁/₂ ~ 60 days at 50 °C
T₁/₂ <1 day at 80 °C
CHARACTERISTICS OF BIOCATALYST DELIVERY SYSTEM

• Compatible with commercial mass transfer devices
• Impose minimal internal diffusional limitations
 – CO$_2$ permeable or highly porous support
• Provide protective environment against inactivation by temperature, solvents, and shear forces
 – Encapsulation/entrapment-based
• Low cost, scalable
 – Commercially available starting materials; simple one/two-step protocol
Akermin developed several proprietary approaches to exhibit CA at gas/liquid interface of absorber column.
PERFORMANCE OF BIOCATALYST IN A COUNTER-CURRENT FLOW COLUMN

20% carbonate (w/w) pH 10.1; p = 1 psig; CO₂ absorption at 45°C;

K_G per packing area, lab-scale test reactor interfacial area ~ 30%

Up to 22-fold increase of K_G was demonstrated
BIOCATALYST MAXIMIZES MASS TRANSFER AND REDUCES COLUMN HEIGHT

Enhancement over 10X reduces the absorber height to less than 130 feet for a 550 mWe coal-fired power plant*

*Aspen Plus modeling by PNNL
STUDY OF CA INHIBITION BY PRODUCTS OF HYDRATION OF FLUE GAS IMPURITIES

Solution study

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Anticipated Concentration</th>
<th>Soluble Product</th>
<th>IC50 (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOX</td>
<td>~80 ppm</td>
<td>Nitrate (NO$_3^-$)</td>
<td>~ 1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nitrite (NO$_2^-$)</td>
<td>> 2000</td>
</tr>
<tr>
<td>SOX</td>
<td>~45 ppm</td>
<td>Sulfate (SO$_4^{2-}$)</td>
<td>> 500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sulfite (SO$_3^{2-}$)</td>
<td>>> 10</td>
</tr>
<tr>
<td>Chloride</td>
<td>< 1ppm</td>
<td>Chloride (Cl$^-$)</td>
<td>> 2000</td>
</tr>
</tbody>
</table>

Sulfate, sulfite, nitrate, nitrite and chloride have little or no inhibitory potency.
TESTING ON FLUE GAS

• Evaluate resistance of the biocatalyst delivery system to Hg, SO$_x$ and NO$_x$

• Demonstrate endurance performance using actual flue gas
 – Flue gas was generated at the Advanced Coal and Energy Research Facility at Washington University in St. Louis
 – Flue gas was gathered into a 10 m3 bag from a short duration combustion test
TESTING ON FLUE GAS

Wyoming Powder River Basin subbituminous coal

~ 90-95% CO₂ capture sustained for over 23 days on flue gas (~14% feed)
~ 90-92% CO₂ capture on Reference Mixture (~15% CO₂ in air) for 14 days
Overall performance is stable in both cases
STUDY OF TRACE CONTAMINANTS: 20 PPM SO₂ AND 20 PPM NO₂

~90% capture maintained over the duration of the experiment
LONG-TERM PERFORMANCE OF CLOSED LOOP REACTOR

400 mL/min 15% CO₂; 20% carbonate (w/w)
pH 10.1; p = 1 psig; CO₂ absorption at 45°C;
thermal swing desorption at 105°C

>20 million CO₂ molecules hydrated by one CA molecule over 75 days
Initial performance >400 kg CO₂ captured per day per kg of CA
ADVANTAGES OF BIOCATALYST DELIVERY SYSTEM WITH CARBONATE CHEMISTRY

- **Significant Rate Enhancement**
 - Lower absorber column heights resulting in lower capital expenditures

- **Energy-efficient process: Low Parasitic Load**
 - Flexibility to regenerate at wide range of pressures/temperatures

- **Carbonate solution has negligible vapor pressure**
 - Lower solution losses and no need for wash columns resulting in lower capital and operating expenses

- **Operation at lower temperatures (40°C) and pH values**
 - Low corrosion rates relative to conventional amine & carbonate processes

- **Carbonate solution does not degrade in presence of oxygen and impurities, which reduces both capital and operating expenses**
 - No need for reforming
 - No expected polishing FGD

- **Carbonate solution is low cost commodity chemical**
 - Combined with lower solution losses, equates to lower replacement costs

- **Environmentally-friendly process**
 - No solvent or nitrosamine emissions to the atmosphere
 - Benign (potentially reusable) by-products with lower disposal costs

A simple process chemistry and design that yields a low-cost solution for CO₂ capture
PROGRESS AND CURRENT STATUS
PROJECT STATUS

• Key Milestones Completed to Date
 – Demonstrated >80% physical protein retention
 – Completed Wetted Wall kinetic testing for K₂CO₃
 – Defined preferred conditions for low energy operation
 – Demonstrated 10+ fold acceleration of CO₂ capture
 – Completed baseline techno-economic analysis
 – Finalized Bench unit column design, M&E balance
 – Executed Site Agreement with NCCC
 – Performed testing of flue gas contaminants
BENCH UNIT SPECIFICATIONS

• **Absorber Design Case**
 – 500 SLPM flue gas (nominal)
 – 90% Capture, nominal 0.175 tpd CO₂
 – Sulzer 500 m²/m³ packing
 – Nominal Liquid: 300 kg/hr (nominal)
 – 20 wt% K₂CO₃, lean pH ~10

• **Heat recuperative cross exchanger and trim coolers**

• **Emerson Delta-V Control System**
UPCOMING ACTIVITIES

<table>
<thead>
<tr>
<th>Activity</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabrication of Bench Unit</td>
<td>June – October 2012</td>
</tr>
<tr>
<td>Scale-up coating process and coat ~100 m² of contactor</td>
<td>November 2012</td>
</tr>
<tr>
<td>Install/Commission</td>
<td>November 2012</td>
</tr>
<tr>
<td>Initial Testing (blank)</td>
<td>December 2012</td>
</tr>
<tr>
<td>Initial Testing (biocatalyst)</td>
<td>January 2013</td>
</tr>
<tr>
<td>Operate unit for six months</td>
<td>January – June 2013</td>
</tr>
<tr>
<td>Model and evaluate the capital operational costs for full-scale coal-fired power plant</td>
<td>June 2013</td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

AKERMIN:
- John Reardon, PI; Director, Engineering
- Dr. Tizah Anjeh, Senior Scientist
- Dr. Tracy Bucholz, Senior Scientist
- Dr. Matt Hulvey, Senior Scientist
- Dr. Brett Rambo, Senior Scientist
- Dr. Mark Walker, Senior Scientist
- Dr. Donghui Jacobs, Research Scientist
- Carrie Duesing, Sr. Research Associate
- Dawn Powell, Sr. Research Associate
- Keith Killian, Research Associate
- Jonathan Tuttle, Engineering Associate
- Luke Weber, Research Associate

PNNL:
- Charles Freeman, PM
- Mark Bearden, PI
- Dr. James Collett, PI
- Dale King, PI

BATTELLE:
- Bradley Chadwell, PM

U.S. DOE-NETL:
- Andrew Jones, PM

Special thanks to:

Novozymes for their generous support with providing carbonic anhydrase.
Emerson for design and supply of bench unit controls and instrumentation.