AB-INFINITE AND MULTI-SCALE STUDY OF AI-Ni-Fe ALLOY SYSTEMS

Alex Vasenkov\(^1\) and Shaun Kwak, CFD Research Corporation
Yun Kyung Shin, and Adri van Duin, Penn State University

DE-FE0005867 award
Program Manager: Patricia Rawls, DoE-NETL

1st Year Project Presentation

March, 2012

\(^1\)E-mail: avv@cfdrd.com, Phone: 256-726-4886

CFD Research Corporation

www.cfdrc.com
AGENDA

- OBJECTIVES
- “THE TEAM”
- SIGNIFICANT FINDINGS: YEAR 1
 - REAXFF FORCE FIELD DEVELOPMENT FOR Fe/Ni/Al/S
 - APPLICATION: MULTISCALE ANALYSIS OF ALLOY SYSTEMS
- SUMMARY
- QUESTIONS AND DISCUSSION
• New materials with micro-to-nano features (e.g., grain shape and size distribution, grain boundary character, grain orientation, and texture) are of vital importance for a clean energy economy.

• However, the current trial-and-error material development methodology is expensive (> $10M) and time consuming (10 to 20 years).

• Activity and excitement over new materials have enhanced, driven by government investment (http://www.whitehouse.gov/blog/2011/06/24/materials-genome-initiative-renaissance-american-manufacturing).

• Increasing trend is to use the advances in multi-scale simulations and high-throughput screening.

• CFD Research Corporation (CFDRC) and Pennsylvania State University (PSU) have teamed in this project to develop, demonstrate, and validate computational capabilities for predictive analysis of interactions at the grain boundary of refractory alloys.
QM methods:
- Fundamental
- Expensive, only small systems

FF methods
- Empirical; need to be trained
- Much cheaper than QM, can be applied to much larger systems
The overall objectives of the proposed project are:

- Develop computational capabilities for predictive analysis of grain boundary interactions using large-scale ReaxFF-Molecular Dynamics (MD) simulations
- Assess degradation mechanisms, and
- Design approach to limit segregation at the grain boundaries of refractories for coal gasification and related processes
More specific Year 1 technical objectives are:

- Demonstrate the feasibility by developing ReaxFF parameters for Ni/Fe/Al/O/S interactions and reproducing trends observed for elemental segregation.

- Validate ReaxFF potentials against literature data for equation of state and elastic data.
Advanced Technology and Service Company

- Supporting Federal Agencies and global businesses since 1987
- Over 70% staff with advanced degrees
- 50+ patents (awarded & pending)

CFDRC develops cutting-edge technologies and provides innovative solutions for:

- Energy & Materials
- Biomedical & Life Sciences
- Aerospace & Defense

Gov’t Sites
- MSFC, Huntsville, AL
- USAARL, Ft. Rucker, AL

Engineering T&E
- Scottsboro, AL

Bio-Laboratories
- HAIB, Huntsville, AL

HQ – Huntsville, AL
Pioneering Physics-based Simulations

Coupled Multi-physics, Multi-scale, Multi-fidelity simulations of fluid, thermal, chemical, mechanical, electrical and biological phenomena for real world applications.

Better insights and better decisions for:
- new concepts and designs
- improved operations and safety
- reduced development time and cost

Complimentary Design, Fabrication, T&E Expertise and Facilities for:
- Combustion, Propulsion and power systems
- Biomedical and Energy devices

Facilitates better products & better systems.
SIGNIFICANT FINDINGS: YEAR 1

A. REAXFF DEVELOPMENT – Fe/Ni/Al/S
Method: Plane-wave Basis Density Functional Theory (DFT)

• All DFT calculations were performed using VASP 4.6.

• 0 K electronic structures were calculated by solving the Kohn-Sham equation using plane-wave basis set.

• Structures were optimized by decoupling the quantum representation of electrons from the classical representation of nuclei (Born-Oppenheimer approximation).

More calculation details:

• Projector-augmented-wave (PAW) method for ion-electron potential
• Perdew-Burke-Ernzerhof (PBE) exchange correlation functional
• Plane-wave cut off energy of 400 eV (standard for oxides and sulfides)
• Interval in momentum space for k-point sampling: 0.20 Å⁻¹ – 0.25 Å⁻¹
• Spin polarization considered for all calculations
Validation was performed over five different cubic crystal structures and different alloying compositions (three example cases are shown below).

Color code:
- **Experiment**
- **Theory (ab initio): All-electron FLAPW** (very accurate and much more expensive)
- **Theory (ab initio): Pseudopotential or PAW DFT** (similar to this work)

<table>
<thead>
<tr>
<th>Crystal Structure</th>
<th>Lattice parameter (a_0) (Å)</th>
<th>Magnetic moment ((\mu_B)/atom)</th>
<th>Formation enthalpy (eV/atom)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{FeNi (L1}_0)</td>
<td>3.556</td>
<td>3.547(^a)/3.568(^f)/3.582(^c)/3.556(^g)</td>
<td>1.660</td>
</tr>
<tr>
<td>(\text{Fe}_3\text{Ni (L1}_2)</td>
<td>3.591</td>
<td>3.560(^a)/3.588(^f)/3.578(^g)</td>
<td>2.067</td>
</tr>
<tr>
<td>(\text{FeNi}_3 (L1}_2)</td>
<td>3.551</td>
<td>3.5(^a)/3.560(^f)/3.553(^c)/3.545(^g)</td>
<td>1.265</td>
</tr>
</tbody>
</table>

Good agreement with experiments and other first-principles calculations
• SE database is constructed for Fe-Ni-Al binary slab surface systems (4 example structures are shown)

• Energy information

<table>
<thead>
<tr>
<th>Bulk composition</th>
<th>Surface Index</th>
<th>Formula</th>
<th>E_{Total} (eV)</th>
<th>E_s (eV/atom)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) FeNi (L1$_0$)</td>
<td>(100)</td>
<td>(FeNi)$_6$</td>
<td>-80.319</td>
<td>0.946</td>
</tr>
<tr>
<td>(b) Fe$_3$Ni (L1$_2$)</td>
<td>(111)</td>
<td>(Fe$_3$Ni)$_6$</td>
<td>-176.040</td>
<td>0.672</td>
</tr>
<tr>
<td>(c) FeAl (B2)</td>
<td>(110)</td>
<td>(FeNi)$_6$</td>
<td>-73.501</td>
<td>0.698</td>
</tr>
<tr>
<td>(d) Fe$_3$Al (DO$_3$)</td>
<td>(110)</td>
<td>(Fe$_3$Al)$_6$</td>
<td>-229.547</td>
<td>0.126</td>
</tr>
</tbody>
</table>

All calculation results are stored as database for reactive force field.
First-principles QM data included in the training set to describe diffusion, alloy formation, mechanical properties…

Volume(pressure) equation of state: the relation between volume change and energy

Fe-X (X= Ni,Al), Ni/Al binary alloys with X concentration up to 75 at. %.
Stoichiometric/Non-Stoichiometric surface:

NiAl(100,001,011)
Ni$_3$Al(001,0111)
NiAl$_3$(001,011)

Pure metal surface:
Fe/Al/Ni(100,111)
BINDING ENERGIES ON METAL SURFACES

Fe on Al surface
- bridge on Al(001)
- hollow on Al(001)
- fcc on Al(111)
- hcp on Al(111)
- substitution on (001,111) surface

Al on Fe surface
- bridging on Fe(001)
- hollow on Fe(001)
- substitution on (001,111) surface
Phase transition of α-Al_2S_3 to corundum phase at low pressure region

(E: energy per cell)

QM

α-Al_2S_3

Corundum

Reax

α-Al_2S_3

Corundum

Energy, kcal/mol

Volume, Å3

Compression → Expansion
Sulfur at the interstitial of octahedral site in Al(fcc)

\[H_f = \frac{1}{nS} \left(E_{\text{system}} - E_{\text{fcc-Al}} - nS \cdot E_{\alpha-\text{sulfur}} \right) \]

\((nS: \text{N. of sulfur in the crystal}) \)

High S content is thermodynamically more favorable than isolated S in metal.

QM

Reax
BINDING ENERGY OF S AT FCC-AL(100,111) SURFACE SITES

\[E = \frac{1}{nS} \left(E_{\text{slab}} - E_{\text{fcc-Al,slab}} - nS \cdot E_{\alpha-\text{sulfur}} \right) \]

- **Al(100)**
 - bridge
 - top
 - hollow
 - fcc
 - hcp
 - interstitial at subsurface

- **Al(111)**
 - fcc
 - hcp
 - top

Graphs
- Energy in kcal/mol
- **Reax** vs **QM**
• The *ab initio* trained ReaxFF force fields can also illustrate the kinetics of atomistic-scale processes with fair accuracy.

• Such processes include diffusion, adsorption, and dissociation at alloy surfaces.

Aluminum diffusion on Fe$_3$Al (100) surface:
SIGNIFICANT FINDINGS: YEAR 1

B. DEMONSTRATION – FEASIBILITY OF REAXFF-BASED MODELING
REAXFF PREDICTIONS FOR ELASTIC CONSTANTS

- Three independent elastic constants for cubic systems – \(C_{11}, C_{12}, \) and \(C_{44}. \)

From the stress-strain relationship:

\[
\varepsilon = C \cdot \sigma \\
\sigma_{xx} = C_{11} \delta \\
\sigma_{yy} + \sigma_{zz} = 2C_{12} \delta \\
P_{110} = \frac{1}{2} C_{11} + C_{12} + 2C_{44} \delta'
\]

\(\delta \) and \(\delta' \) – deformation parameters.

- Comparison between ReaxFF predictions and experimental measurements for the elastic constants of \(\text{Ni}_3\text{Al} \) (\(\text{L}_1\text{2} \)) single crystal in the temperature range of 300 K – 1100 K.

A short series of ReaxFF-MD simulations can provide temperature-dependent mechanical properties of ANY alloy systems of interest.

FeAl (BCC, single crystal)

Experiment data at 300 K from Einspruch and Claiborne, *J. Appl. Phys.* 35, 175 (1964)

Ni$_3$Fe (FCC, single crystal)

Experiment data at 300 K from "Single crystal elastic constants and calculated aggregate properties: a handbook" 1971: M.I.T. Press
QM-DFT not only provides DB for force field development but also provide key physical insights.
Clustering (fcc-Fe$_3$Al, Fe$_3$Ni and Ni$_3$Al) consisting of ~4000 atoms, ~35x35x35 Å

Heating up to 2500 K with temperature gradient 0.05 K/step and cooling to 300 K with 0.0125 K/step
Weak segregation of Al in Ni$_3$Al and strong segregation in Fe$_3$Al: segregation of NiAl is energetically less favorable due to high heat of formation. (L. Hammer et al., *Surface Science*, 412/413 (1998))

Deeper subsurface segregation of Ni in Fe$_3$Ni, ~4.5 Å
AL SEGREGATION AT FE-AL ALLOY SURFACES: MULTISCALE MODELING

- MD simulations are typically limited to a nanosecond time scale – not usually applicable for segregation-diffusion processes which occurs in sec – hrs.

- We employed MD-Monte Carlo (MC) hybrid scheme along with the first-principles trained ReaxFF force fields.

- MC simulation stages were iterated with the short bursts of atomistic MD simulation stages:
 - MC steps “perturb” the structure to stimulate the rare occurring events such as nearest neighbor hops.
 - MD steps “relax” the structure to bring the realistic representation of the system at the equilibrium temperature.

ReaxFF-based MD-MC hybrid scheme is ready for segregation studies.
AL SEGREGATION WITH AND WITHOUT VACANCY-RELATED DEFECTS

Assessment of the initial vacancy concentration

I. Vacancy assisted segregation (8% vacancy defects)

- Representation of ideal cases where maximum segregation occurs

II. Segregation at pristine surface (no defects)

- Representation of experimental condition where segregation occurs on annealed surfaces
Spatial depth profile of Al/Fe ratio (I): Ideal case with maximum segregation

- Maximum segregation leads to the theoretical limit predicted from DFT.

MD-MC results are consistent with DFT predictions.
Direct comparison with segregation experiment shows a good agreement.

- In the 700 K to 1100 K range, Al/Fe ratio slowly rises with the increased concentration of vacancy sites.
- In contrast, at temperatures above 1100 K, Al/Fe quickly grows with the increased vacancy concentration.

The ReaxFF-MC/MD predictions point to the competition between the vacancy-driven bulk and surface diffusion.
AL SEGREGATION: DIRECT COMPARISON WITH EXPERIMENT

- We relate this drastic change with the enhanced surface diffusion, whose activation barrier was estimated at \(~0.1\, \text{eV}\).

- The surface diffusion is responsible for disordering of the surface and massive formation of vacancy sites at the surface.

- Increase in annealing temperature over 1100 K leads to disordered surfaces accelerating the Al diffusion.

- This is the first time when first-principles-based computational model is used to provide quantitative insight to the mechanism of segregation.
CONCLUSIONS
CONCLUSIONS

• ReaxFF potentials for Ni/Fe/Al/O/S interactions have been developed and validated against first-principles energetics information based on QM calculations.

• Developed ReaxFF potentials for Fe-Ni-Al alloy systems were shown to be reliable to the scale of 3 kcal/mol for heat of formation and 20% of elastic properties.

• A short series of ReaxFF-based MD simulations demonstrate the feasibility of the method towards predicting the thermodynamic and kinetic properties of the alloy systems.
• Successful implementation of MD/MC hybrid scheme to the ReaxFF method enables a direct comparison with experiment on segregation in Fe-Al surfaces in a temperature range from 400°C to 1000°C.

• Owing to the nature of force field methods, the method provides a straight forward extension to multi-component alloy systems with an expected level of accuracy comparable to QM-based analysis.
Year 1 Milestones

1. **100% M1**
 ReaxFF potentials for Al/O/X clusters (X=S, Fe, and Ni) are tested to reproduce QM-binding low-energy sites within 3 kcal/mol

2. **100% M2**
 ReaxFF potential for Fe/Ni/Al/O interactions are tested to reproduce equation of state and elastic data from the literature with an accuracy of 10% and 20%, respectively

3. **60% M3**
 ReaxFF potentials for interactions of Fe-Ni-Al$_2$O$_3$/S are tested to reproduce trends from the literature

4. **30% M4**
 ReaxFF potential for Cr, Cr/O, and Cr/S are tested to reproduce QM-binding energies for low-energy sites within 3 kcal/mol

1This task was added to incorporate modeling of ferritic steels with simple compositions
THANK YOU