

Oxide Dispersion Strengthened Steel Process Development at CANMET – MTL

by

Selçuk Kuyucak

Outline

- Background
- Facility Development
- Preliminary Work
- Collaborations

Background

- Canada signed for Gen-IV Int. Forum for contributions in supercritical water-cooled (SWCR), and very high temperature reactors (VHTR).
- Material requirements for in-core structural components of SWCR:
 - Radiation-resistance against swelling
 - Corrosion-resistance in supercritical water environment
 - Creep-resistance up to 825°C
- Fe-Cr steels strengthened by nano-sized oxide particles is considered to be a viable solution.

SCWCR / HEC Design

Canada

Planned Processing Route

- Make up steels in MTL's VIM furnace
- Atomise steels to powder: contract out
- Mechanically alloy steel powders with titanium and nano-sized yttria powder: procure and set up an attrition mill
- Transfer milled powder to a steel can for hot extrusion: refurbish an existing glove box with argon purifiers
- De-gas steel at 400°C, 0.1 Pa vacuum
- Crimp tubing to steel can, age powder at 900-1100°C
- Reheat to 1200°C and extrude to 1" dia. rod

Quality Assurance and Further Processing

- Check for oxide dispersion: micro-characterization, atom probe tomography at McMaster Univ.
- Mechanical properties: new creep machines
- Corrosion resistance: supercritical water loop
- Coat steels for corrosion-resistance / coatability
- Radiation resistance: collaboration with a neutron / proton irradiation facility
- Check hot and cold formability to tube
 - Pilger mill

- Investigate for appropriate welding methods / weldability
 - Friction stir welding / brazing

Metal Powder Production

Options available for atomization:

- Water-jet Carl Blais, Laval Univ.
- Nitrogen gas ASL, Sheffield, UK
- Argon gas
- Impulse

ATI Powder Metals

Hani Henein, Univ. of Calgary

Argon gas atomisation is the preferred method but expensive. Proceed with nitrogen gas atomisation.

Process coating steel by water-jet and argon gas atomisation.

Attrition Mill for Mechanical Alloying

Two potential suppliers have been identified:

- Union Process, Akron, OH
 - Lab Attritor 1-SD
 - 3 kg/batch powder processing capacity
 - Used by Japanese researchers
- Zoz GmbH, Wenden, Germany
 - Simolayer CM01, CM08 or CM20
 - 0.25 to 4 kg powder proc. capacity
 - Expensive

Attrition Mill Procurement

- Operation under a hydrogen atmosphere is desirable as argon contributes to radiation damage / swelling
- However, suppliers were unwilling to provide such a mill because of its safety concerns and difficulties in meeting the related codes.
- We made a decision to buy a mill for operation under argon and retrofit it later for hydrogen operation.

8

Glove Box

- Milled material surface is highly active, needs to be protected from oxygen during transfer to steel cans.
- Refurbish an existing glove box with oxygen and moisture purifiers for argon atmosphere with <1 ppm O₂ and H₂O.
 - Attach a controller and respective analyzers if feasable.

Vacuum De-gassing

- Powders contained in steel cans and connected to crimpable tubes are degassed at 400°C.
- The following hardware was put together:
 - A vertical tube furnace with a 10" heated zone
 - Turbomolecular pump with a rotary vane backing pump
 - A two-stage high vacuum pump in parallel
 - Valves, gauges, tubing and connectors
- During a degassing operation, operate the vacuum pump for 2 h or until 1 Pa, and use the turbo-pump for final removal of volatiles only.

Crimpable Tubing

- Critical for retaining vacuum in steel can after degassing.
- Traditionally, copper tubing is used to hermetically seal freon in A/Cs. However, 1200°C reheat requires a higher temp. tubing metal.
- We tried a ¼" OD, cold-drawn low-C steel tubing in the following conditions: as-is, cleaned, annealed and cleaned, locally heated where crimping was to be applied.
 - Hermetic seals were achieved only 1 out of 3 cleaned tubing. Heating the tube prior to crimping did not help.
 - Fcc metals are know to crimp well. Try Ni-200 tubing next.

Steels Selected for Study

Fe, 9Cr Fe, 14Cr

- Minimize common residuals (Si, Mn) to prevent He-swelling.
- No Al-killing for processing by atomisation.
- W is better for swelling but more of it is required for strengthening.
- F/M steel contains C for strengthening.

Steels Made in MTL

Steel	Heat No.	Cr	Мо	W	С	Si	Mn	Ni
Base compositions for ODS								
MA957	V9011	14.4	0.30	-	0.021	<0.01	0.076	<0.01
14WYT	V0003	14.4	-	2.1	0.017	0.027	<0.05	0.37
F/M steel	V0004	11.9	-	2.1	0.120	0.024	<0.05	0.33
Coating steel								
Hi-Cr ferritic	V0002	25.3	_	_	0.018	0.72	<0.05	<0.01

- Steels are vacuum induction melted and poured into cast iron molds
 - 225 kg steel melts, producing 4 x 50 kg ingots
 - Facility for on-line analysis and trim additions
- Ni contamination from FeW

Water-jet Atomisation

Steel	Comments	Yield (pct)	N (wt pct)	O (wt pct)	<i>d</i> _{50%} (μm)	t _{Cr2O3} (μm)
Fe-25Cr	MTL Melt		0.012	0.024		
(V9012)	MTL Ingot		0.016	0.045		
	Powder, water jet atom. at Laval Un.	44 / 30	0.015	0.734	70	0.40
	Powder, water jet atom. at ASL	45 / 35	0.028	0.431	30	0.10

Chromite film thickness of powders is based on mass balance for O-content:

$$t_{Cr2O3} = \frac{MW_{Cr2O3}}{3 MW_O} \frac{\rho_{Fe}}{\rho_{Cr2O3}} \frac{\overline{d}_{50\%}}{600} (\text{wt\% O})$$

N solubility in Fe with Cr (wt %)						
Cr	N in Liq-Fe (1600°C)	Ν in α-Fe (1520°C)				
0	0.045	0.013				
9	0.110	0.032				
14	0.180	0.052				
25	0.420	0.121				

Nitrogen Gas Atomisation

- Four steels were atomised at ASL, Sheffield, UK, Mar-10.
- Steels were remelted in an air induction furnace, and poured through a tundish fitted with a 5 mm dia. nozzle.
- Low Si content of the base steels resulted in poor fluidity, early blockages and poor yield:

Steel	Melt (kg)	Powder (kg)	Yield (pct.)	Middle fraction (-150/+40 µm, pct.)	APS (µm)		
Base compositions for ODS							
MA957	173	30.8	18	50	55		
14WYT	184	34.0	18	49	53		
F/M steel	189	42.0	22	51	75		
Coating steel							
Hi-Cr ferritic	187	180	96	47	80		

Nitrogen Gas Atomisation

Steel	Comments	N (wt pct)	O (wt pct)	<i>d</i> _{50%} (μm)	t _{Cr2O3} (μm)
MA957	MTL Melt	0.012	0.017		
	ASL Melt	0.023	0.088		
	Powder, N2 gas atom. at ASL	0.026	0.257	55	0.11
14WYT	MTL Melt	0.016	0.037		
	ASL Melt	0.032	0.071		
	Powder, N2 gas atom. at ASL	0.030	0.097	53	0.04
F/M steel	MTL Melt	0.017	0.038		
	ASL Melt	0.029	0.062		
	Powder, N2 gas atom. at ASL	0.031	0.079	75	0.05
Hi-Cr	MTL Melt	0.021	0.025		
	ASL Melt	0.025	0.045		
	Powder, N2 gas atom. at ASL	0.026	0.063	80	0.04

Nitrogen Uptake in Steels

- Nitrogen content of powder is 0.03 wt% or less.
- Ti:N mass ratio in TiN is 3.4:1
- Expect only 0.10% Ti to form TiN.
- Titanium is added to attrition mill at 0.3 0.7% of steel powder. Thus, sufficient excess titanium exists to form yttrium titanate for dispersion strengthening.

Other Raw Materials

- Yttria powder under 30 nm was only available from China. We bought a sample quantity from TJTM Inc. and checked its particle size under TEM. APS: 20-40 nm.
- Low-oxygen titanium powder was procured from Advanced Powders and Coatings, Quebec.

Particle size: +45 / -106 µm. (0.090% O, 0.003% N by MTL's Leco)

Yttria powder from China

Collaborations

- Prof. Ge's group at Inst. of Nuclear Mats, Univ. of S&T, Beijing
 - Received ODS steels from China for creep testing
- Oak Ridge National Laboratory, TN
 - CANMET will arrange for nitrogen gas-atomised steel powders to be sent to ORNL for attrition milling

