Materials for Advanced Ultra-Supercritical Steam Boilers

Mike Santella ORNL John Shingledecker EPRI (formerly of ORNL) Bob Swindeman ORNL (retired)

24th Annual Conference on Fossil Energy Materials Pittsburgh, PA May 26, 2010

Efficiency Improvements depend on Supercritical Technology

Data: Alstom

Maximum Usage Temperature of Steam Boiler Alloys

 Only precipitation-strengthened Ni-based alloys like 740 offer strength enough to operate ≥ 760°C (1400°F)/35 MPa (5000psi)

Estimated Total Amount of Tubing for a Generic A-USC Boiler

- Carbon Steel Grades 420,000lf; 3,750,000 lbs
- T12 Alloy Steel Grade 500,000 lbs
- T23 to T92 Alloy Grades 2,600,000 lbs
- Traditional Stainless Steels 1,600,000 lbs
- Solid-solution Ni-based alloys 1,100,000 lbs
 - 1.750" OD X 0.400" MW
 - 2.00" OD X 0.165"/0.355" MW
- Precip.-strengthened Ni-based 850,000 lbs
 - 1.750" OD X 0.290"/0.400" MW
 - 2.00 OD X 0.280"/0.400"MW

Images courtesy of The Babcock & Wilcox Company, www.babcock.com

Task 2: Mechanical Properties of Advanced Alloys

Creep-Rupture Testing is Highest Priority

- Characterize and understand creep behavior & mechanisms
 - ASME Code Cases: Inconel 740 & Haynes 282
 - Supplement minimum required data for code-approved alloys: e.g., alloys 230 & 617
 - Identify and understand fabrication & welding issues:
 e.g., effects of cold-work on creep, weld strength factors
- Provide creep data for boiler design activities
- Characterize and understand issues important to welded construction

Build confidence for using new high-strength alloys in new applications

Longer-time tests of 740 are confirming strength retention up to ~ 20,000 h

- On-going tests emphasize longer times, ~ 10,000+ h
- Critical for ASME Code approval

Recent work has heightened interest in Haynes 282

Both alloys are expected to contain about 20% γ' -phase for strengthening

Strengthening depends on magnitude and sense of γ/γ' misfit

- Misfit ~ 0 minimizes γ/γ' surface energy, reduces coarsening rates
- Misfit < 0 superposition of stress reduces net stress in γ -phase

γ/γ' misfit condition is more favorable for 282

• 282 has an advantage whether or not TCP phases are considered

Increased Mo reduces γ/γ' misfit but it also increases TCP phases

- Mo promotes formation of TCP phases, $\mu \& \sigma$
- TCP phases can be linked to premature creep cavitation

Pressurized Tube Bend Creep Tests Are Aiding Determination of Cold-Work Limits

- Currently the ASME B&PV Code (Section I, PG-19) allows cold forming strains of only 10-15% for austenitic materials depending on use temperature
- Cold-bent tubes are being creep tested to provide guidance for determining fabrication rules
 - 740 tested; 617 running

Summary of 617 creep test data

617 CCA data converge with 617 database above ~ 750°C

Running tube bends are consistent with conventional data #

26-May-2010 Materials for Advanced Ultra-Supercritical Steam Boilers

Initial testing indicates cold-work effects are more significant for Inconel 740

- Next step: Re-solution anneal bends and duplicate tests
- More-specialized testing is underway to aid understanding

Weld Strength Factor issues are under study for 740

• 2-inch-OD x 0.4-inch-wall 740 tube

WSF results from GTA welded 740 tubes

- WSF decreases: ~ 0.1/10,000 h at both temperatures
- WSF averages: 750°C 0.74; 800°C 0.73

Crystallographic imaging indicates weld properties should be anisotropic

- Directionality could contribute to reduced strength of cross-weld tests
- **Big effect? Ways to reduce?** ¹⁷ ^{26-May-2010} Materials for Advanced Ultra-Supercritical Steam Boilers

Weld Microstructures Can Be Modified By Heat Treatments

HT #1 Aged at 800°C/4 h

HT #2 Solution anneal at 1120°C/1 h Aged at 800°C/4 h

Summary of cross-weld creep testing

- 750°C/300 MPa data for 282 weld metal compare favorably with SA 740 weldment
- Tests at 700°C, 750°C, & 800°C are continuing

Substantial progress is being made to qualify Advanced Alloys for A-USC

- Long-term creep-rupture testing
 - Inconel 740
 - ASME Code Case data package submitted for initial consideration
 - Alloy 282
 - Alloys 230 & 617
- Weldment strength studies
 - Understand sources of, and minimize Weld Strength Factors
- Cold-work effects
 - Characterize, understand, and minimize cold-strain effects on creep properties

Building confidence to use new high-strength alloys

Milestones & Status:

- Summarize at Quarterly review meeting results from tube-bend rupture tests of CCA617
 - 12/2009, completed
- Summarize at Quarterly review meeting progress to improve weld strength factors
 - 06/2010, on-schedule, completed
- Summarize at Quarterly review meeting creep-test results from third heat of Inconel 740
 - 12/2010, on-schedule
- Prepare draft creep data package for ASME Code Case for Inconel 740
 - 06/2011, completed

