Novel and Improved Electrode Structures Through Infiltration

Steve Visco
Mike Tucker, Craig Jacobson,
Tal Sholklapper, Grace Lau,
Lutgard De Jonghe

Lawrence Berkeley National Laboratory
Berkeley, California USA

Presented at 8th Annual SECA Workshop and Peer Review
Core Technology Program – Electrodes: Performance and Degradation
August 7th – 9th 2007
LBNL SECA Core Program

In FY07 the LBNL core effort was focused on the following areas:

1) Infiltration of perovskites and other appropriate catalysts into composite cathodes to form an interconnected network of nanoparticulate coating;

2) Infiltration of ceria and other appropriate materials into Ni-YSZ anodes to improve sulfur tolerance;

3) Determination of baseline performance and long term stability of infiltrated and non-infiltrated electrodes;

4) Design and fabrication of 2-cell stack for national labs and industrial teams as a standard platform for testing electrodes, interconnects, contact paste, and seals in a manner that allows reliable comparison across research teams;

5) Continued optimization of interconnect coating technology and elucidation of the mechanism of chromium migration through protective coatings.
Metal Stability & Interactions

- Oxidation behavior
- Oxide spallation
- Area specific resistance
- Chromium migration

LBNL stack components

- Air electrode (La_{0.8}Sr_{0.2}MnO_{3-x})
- Stainless steel interconnect
- Transpiration

- Vapor chromium transport
- Bulk & grain boundary Cr transport
- Surface migration
Risk of scale spalling increases above ~3-5µm. (use 3 µm to be safe!)

Time (hours) vs Chromia Scale Thickness (microns)

- ~10^{-14} g2/cm4/sec for transportation 5,000 – 10,000 hrs
- ~10^{-15} g2/cm4/sec for stationary 50,000 – 100,000 hrs
High Temperature Oxidation of Metal Components
Long-term Stability of Coatings for Preventing Cr Loss

- Oxidation: 1073 K, $P_{H2O} = 2.0 \times 10^3$ Pa, 3.33×10^{-6} m3s$^{-1}$ (200ml/min)
- Cr test: 1073 K, 86.4 ks (24 hrs), $P_{H2O} = 1.0 \times 10^4$ Pa, 3.33×10^{-6} m3s$^{-1}$ (200ml/min)
Condition for minimum spallation of (~1%) scales on 430ss after isothermal oxidation and fast cooling to RT

The lower the operating temperature the thicker the scale can be

Cr$_2$O$_3$ not only grows slower but also can be thicker before failure

RE slow scale growth and increase adhesion/thickness

Reducing atmosphere treatment also increase adhesion

Sweet spot between 650–750 C

Scale thickness decrease because of higher thermal stresses and/or more defect formation at high oxidation temperatures
Conditions to reach ~1% Spallation in static air after isothermal oxidation and fast cooling to RT

Time to Minimum Spallation

Oxidation time to spallation (hr)

Temperature (C)

- as-received surface
- H2-treated & Y coated

Did not fail

Coated 430?
What have we done to solve the Cr problem?

Cr Evaporation
- Coat steel to prevent Cr diffusion to electrodes
- Density of coating seems more important than coating material

Cr Deposition
- Pairwise MOx-Cr interactions suggest Cr tolerant catalysts
- Enhance Cr tolerance of commercially available electrodes by infiltration
Rxn Couples

LSM + Cr₂O₃

LNF + Cr₂O₃
LNF Does Not React With Cr\textsubscript{2}O\textsubscript{3}

Pellets of LNF-Cr\textsubscript{2}O\textsubscript{3} and LSM-Cr\textsubscript{2}O\textsubscript{3} powder mixtures reacted for 150h at 700°C and 900-950°C.

LSM-Cr\textsubscript{2}O\textsubscript{3}
- 700°C minor reaction
- 950°C complete reaction

LNF-Cr\textsubscript{2}O\textsubscript{3}
- 700°C NO reaction
- 900°C NO reaction
LBNL Infiltration Core Program

– Improve existing structures (and novel electrode design)
 • Improve cathode performance at low temperature
 • Improve tolerance to Cr
 • Sulfur tolerant anodes

– Novel Electrode Design
 • Infiltration technology allows flexibility in SOFC design and processing
 • Enables mSOFCs
Infiltration Structures & Challenges

Electrolyte supported: porous electrodes - straightforward

Anode supported: cathode is straightforward, anode may be too dense in unreduced state

Metal supported: engineered for infiltration - entire electrode structure is infiltrated
Infiltration Step

Nitrate-Surfactant Concentrated Precursor

Surfactant dispersed Electrode Precursors

Porous electrolyte matrix

Composite Commercial electrodes (YSZ-LSM)

e-electronic conductor

ionic conductor

O²- ionic conductor

O₂ oxygen

Sc₀.₁Zr₀.₉O₂

Mn³⁺ Mn³⁺

La²⁺ La²⁺

Sr²⁻ Sr²⁻
Sulfur Tolerant Ni-YSZ

0% degradation over 180 hrs

973 K, 0.4 Acm⁻²

H₂ + 40 ppm H₂S, 500 hours

Cell Voltage / V

Time / hours

Infiltrated cell
Non-infiltrated cell
LBNL Collaboration with Electro Sciences Lab to Improve Performance of ESL SOFC product

Performance @ 0.7'

Performance @ Peak Power

Working on standard cell for 700°C operation - available to industrial teams, Universities, and National Labs - US supplier
Commercial Symmetric Electrolyte Supported LSCF Cell from INDEC
LSCF-YDC/TZ3Y/YDC-LSCF
HC Starck LSCF/LSCF Cell

Electrolyte supported cell: electrode Impedance before and after infiltration 700 °C

=>45% improvement in cell resistance

Ceria infiltration

Electrolyte supported cell: electrode Impedance before and after infiltration 700 °C
Core Technology Program
Technology Transfer

- Infiltration workshop
- Transfer technology to companies to U.S. companies and labs
- Guidance to manufacturers of cell stack components (ESL) to enhance U.S. competitiveness
Infiltration Workshop: February 16th, 2007

- Argonne National Laboratory
- Pacific Northwest National Lab
- Georgia Tech
- Instructional DVD from Workshop available
LBNL 2-cell Standard Stack Core Effort

Based on 2.5 cm x 2.5 cm SOFC plates for 2” bore furnace
Original design by Hideto Kurokawa
Scaled-up Standard Stack:
LBNL lead with Lane Wilson & Wayne Surdoval

5 cm x 5 cm SOFC plate design to fit into 3” bore furnace ($1500)
Quotation 4418

McAllister Technical Services
West 280 Prairie Avenue
Coeur d'Alene, ID 83815
Ph: 208-773-9527
Fax: 208-773-3264
Email: solutions@mcallister.com
URL: www.mcallister.com

Date: 02-Feb-07
This estimate is good for 30 days from the
data shown above. Prices quoted are for
quantities shown.

To: Steven J. Visco
LLNL Materials Sciences Division
1 Cycotron Road
Berkeley, CA 94720
Ph: 510.486.5921
Fax: 510.486.4481
avisco@llnl.gov

Terms Offered: Net-30
Delivery: 12 Wks., ARO
(based on current workload)
F.O.S.: Factory, Coeur d'Alene, Idaho

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Description</th>
<th>Model</th>
<th>Unit Price</th>
<th>Amount U.S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>SOFC Cell Assembly, CNC Program</td>
<td>SOFC SX5</td>
<td>$750.00</td>
<td>$750.00</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Design</td>
<td>SOFC SX5</td>
<td>$750.00</td>
<td>$750.00</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Additional Center Plates (if ordered at same time)</td>
<td></td>
<td>$135.00</td>
<td>$675.00</td>
</tr>
</tbody>
</table>

Thank you for the opportunity to quote on this project!

Sales Tax: N/A
Shipping: at cost

Name: Robert McAllister, President
McAllister Build of 2-cell 5 x 5 cm SOFC Plate Stack

- Standardized test platform
- Allows testing of electrodes, seals, contact pastes, in a uniform manner
- Allows comparison of results between labs, universities, and industry
- Fits in inexpensive furnaces
- Is not intended as a precursor to commercial device
- ~ $800/ea. after initial build
LBNL Work on mSOFCs

- Build structure from low cost materials
- Obtain performance similar to anode supported cells
- Show long term stability (rapid progress)
- Work with cell manufacturers (licensing & sponsored research)
Rapid Thermal Cycling – Braze-Sealed Cell

Anode supported tubular cell cannot tolerate rapid thermal cycling. Cell failed, joint did not.

Metal-supported cell/brazed joint is robust to thermal cycling. Unexpected shutdowns, redox cycles.
650-700°C Performance

Moist hydrogen fuel, air
Infiltrated Electrodes Support High Power Density

Moist hydrogen fuel, pure oxygen (removes gas transport limitation)

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Max Power (mW/cm²)</th>
<th>Power at 0.7V (mW/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>650°C</td>
<td>982</td>
<td>726</td>
</tr>
<tr>
<td>700°C</td>
<td>>1300</td>
<td>993</td>
</tr>
<tr>
<td>750°C</td>
<td>>1300</td>
<td>>1300</td>
</tr>
</tbody>
</table>
Work with manufacturer to ensure manufacturability as continue cell development
High Volume Porous Metal Media

Coal: kW to MW?

5 x 5 cm mSOFC

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.
Transitioning Technology to Private Sector

- LBNL is in discussions with cell/stack manufacturers for licensing infiltration and mSOFC technology for both planar and tubular configurations.
- Wide range of IP being negotiated for SOFC, an coating for filtration (including spin-off applications for coal gasification).
- Commercial interest in infiltration and mSOFC technology is rising quickly.
Future Work

• Continued focus on infiltration technology as a means of improving cathode (and anode) performance at reduced cell temperatures
• Emphasis on baseline degradation studies on commercial cells as a metric of infiltration performance over time
• Continuing activities in technology transfer
• New stuff
Acknowledgements

This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Thanks to Lane Wilson and Wayne Surdoval for their input to the LBNL program

Good luck to Lane at BES