

EPEI ELECTRIC POWER RESEARCH INSTITUTE

Gasification Technology Options for SOFC Applications

Ron Schoff (<u>rschoff@epri.com</u>) Neville Holt (<u>nholt@epri.com</u>) Electric Power Research Institute

8th Annual SECA Workshop San Antonio, Texas August 7-8, 2007

Presentation Outline

- SOFC Syngas Purity Requirements
- Gasification Technologies and Characteristics
- Gas clean up options
 - Currently available
 - In Development
 - R&D Status

Contaminants in Coal

 Your average lump of coal contains a lot more than just Carbon, Hydrogen, Oxygen, Nitrogen and Sulfur (with a touch of Chlorine)

Coal Type	Hg	As	Se	Cd
	(ppm)	(ppm)	(ppm)	(ppm)
Pittsburg	0.11	4.1	0.6	0.06
Elkhorn/Hazard	0.13	4.0	3.1	0.31
Illinois No.6	0.22	2.7	2.2	0.15
Wyodak	0.19	1.3	1.6	0.30

Typical Metal Contaminants in Coal

Bool et al., 1997

- In addition to these metal contaminants, coal ash contains the following:
 - Si, AI, Fe, Ti, P, Ca, Mg, Na, K, S, and more

Coal Gasification Chemistry & Reactions

Important reactions in coal gasification:

Coal Devolatilization = CH_4 + CO + CO_2 + $Oils$ + $Tars$ + C (Char)			
$C + O_2 = CO_2$	(exothermic – rapid)		
$C + 1/2O_2 = CO$	(exothermic – rapid)		
$C + H_2O = CO + H_2$	(endothermic – slower than oxidation)		
$C + CO_2 = 2CO$	(endothermic – slower than oxidation)		
$CO + H_2O = CO_2 + H_2$	Shift Reaction (slightly exothermic)		
$CO + 3H_2 = CH_4 + H_2O$	Methanation (exothermic)		
$C + 2H_2 = CH_4$	Direct Methanation (exothermic)		

Typical O₂-Blown Gasifier Produced Syngas

- H₂ 30 50%
- CO 40 60%
- **CO**₂ 4 20%
- H₂S 0.5 2%
- COS ~500⁺ ppmv

- Ar 0.5 1%
- N₂ 0.7 6%
- NH₃ ~50-100 ppmv
- Ni & Fe* Carbonyls 1 to 4 ppmv
- *HCN* ~50-100 ppmv

Acid Gases

HCOOH* ~50 ppmv

Trace Components Include: As, P, Hg, Cd, Zn, Bi, Sb, Pb, Na, K, Fe, Ni

- + H₂S:COS is typically about 95%:5% of total sulfur
- * Carbonyls and Formic Acid (HCOOH) formed downstream of Gasifier

Estimated Thermodynamic Equilibrium State of Trace Components

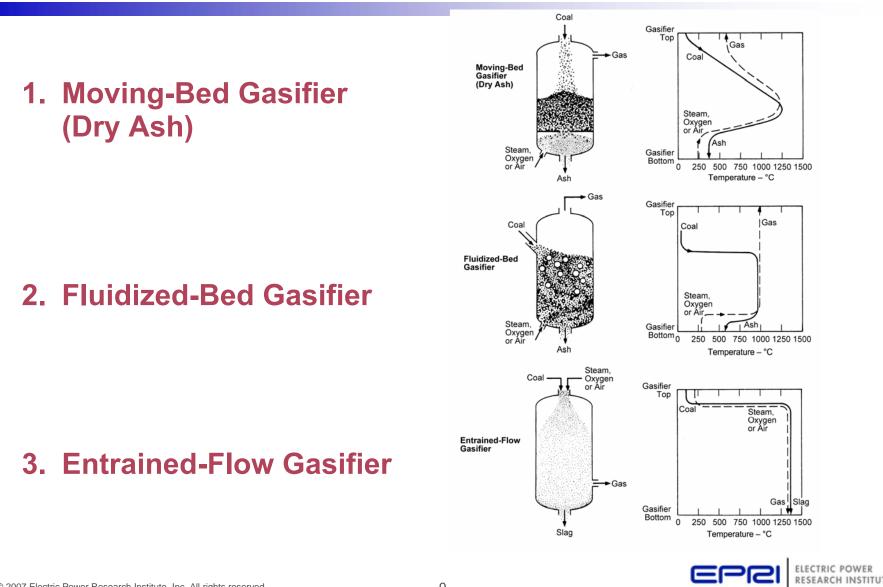
>1000°C	400° to 800°C	100° to 400°C	<100°C	
AsO, As ₂	AsO, As ₄	As ₂ ,	AsH3,	
Be(OH) ₂	Condensed Species	Condensed Species	Condensed Species	
Hg	Hg	Hg, HgCl ₂	Hg, HgCl ₂	
HBO	HBO	HBO	-	
VO ₂	Condensed Species	Condensed Species	Condensed Species	
H ₂ Se, Se, SeO	H ₂ Se	H ₂ Se	H ₂ Se	
NiCl, NiCl ₂	Condensed Species	Ni(CO) ₄	Ni(CO) ₄	
CoCl ₂ , CoCl	Condensed Species	Condensed Species	Condensed Species	
SbO, Sb ₂	SbO, Sb ₂	Sb ₄	Condensed Species	
Cd	Cd	CdCl ₂	Condensed Species	
Pb, PbCl ₂	PbS, Pb, PbCl ₂	Condensed Species	Condensed Species	
Zn	Zn, ZnCl ₂	Condensed Species	Condensed Species	
	AsO, As ₂ Be(OH) ₂ Hg HBO VO ₂ H ₂ Se, Se, SeO NiCl, NiCl ₂ CoCl ₂ , CoCl SbO, Sb ₂ Cd Pb, PbCl ₂	AsO, As2AsO, As4Be(OH)2Condensed SpeciesHgHgHBOHBOVO2Condensed SpeciesH2Se, Se, SeOH2SeNiCl, NiCl2Condensed SpeciesCoCl2, CoClCondensed SpeciesSbO, Sb2SbO, Sb2CdCdPb, PbCl2PbS, Pb, PbCl2	AsO, As2AsO, As4As2,Be(OH)2Condensed SpeciesCondensed SpeciesHgHgHg, HgCl2HBOHBOHBOVO2Condensed SpeciesCondensed SpeciesH2Se, Se, SeOH2SeH2SeNiCl, NiCl2Condensed SpeciesNi(CO)4CoCl2, CoClCondensed SpeciesCondensed SpeciesSbO, Sb2SbO, Sb2Sb4CdCdCdCl2Pb, PbCl2PbS, Pb, PbCl2Condensed Species	

Gasifier operating range Source: SRI International presentation from 2006 SECA Review Meeting

ELECTRIC POWER

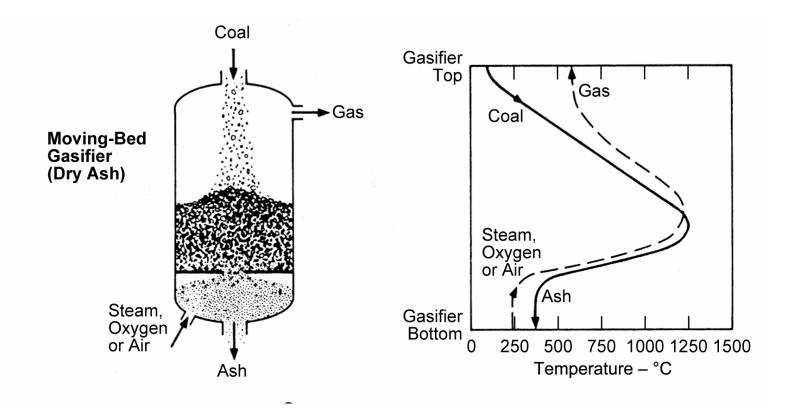
Known Issue: Nickel Carbonyls

- Nickel in feedstock ash can react with CO in the syngas if at high partial pressure and form Nickel carbonyl
 - Ni + 4CO \leftrightarrows Ni(CO)₄
 - − NiS + 4CO+ $H_2 \leftrightarrows$ Ni (CO)₄ + H_2 S
- Both ISAB and Puertollano have reported that Ni carbonyl has passed through all the gas clean-up steps and reached the CT where it has plated out on the hot section parts
- Direct water quench should remove some carbonyls
- Some AGR processes will remove carbonyls
 - Rectisol, yes
 - Selexol, expected to remove carbonyls but no verified experience
 - MDEA solvents do not remove carbonyls
- Activated carbon beds should remove iron and nickel carbonyls



SOFC Gas Purity Requirements

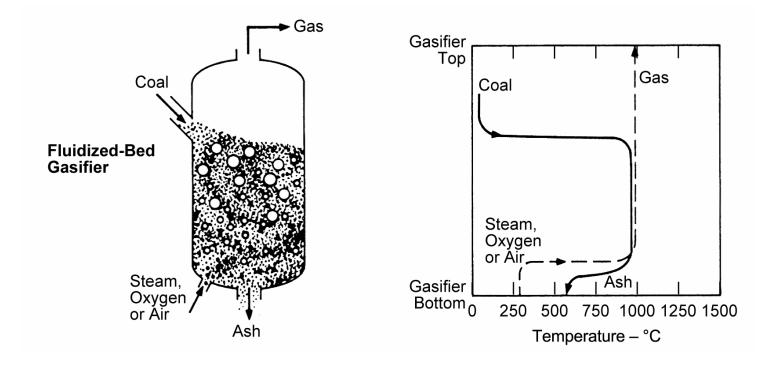
- No chlorides (reduced H₂/CO adsorption on Ni)
- <5 ppm H_2S (reduced steam reforming activity)
- Very low (Zero?) Aromatic Hydrocarbons (Benzene, Naphthalene etc)
- No CI, P, As (<1 ppm), Hg
- CO, H₂, CH₄ are the main fuel components but the SOFC must be designed to handle the appropriate heat balance for the actual composition
- CO₂ and H₂O can be tolerated but take up space and are preferably minimized
- Contaminant impacts require further study



The 3 Major Types of Gasification Processes

© 2007 Electric Power Research Institute, Inc. All rights reserved.

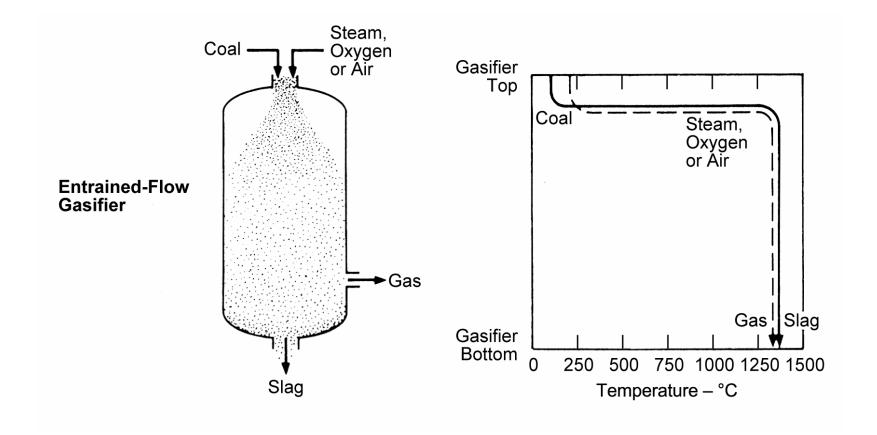
1. Moving-Bed Gasifier (Dry Ash)



Moving Bed Gasifiers – Main Features (Lurgi dry ash, BGL etc)

- Lock Hopper top feed. Sized coal 2" x 1/4" required
- Countercurrent operation
- Low outlet temperature 600-1000 F
- Tars, oils and phenolic byproducts
- Syngas 9-10% CH₄ or ~ 15-18% of Carbon in coal. Syngas not well suited for synthesis of Hydrogen, Ammonia, Methanol, DME, but OK for SNG.
- Lurgi dry ash units in operation worldwide (Sasol F-T, BEPC SNG)
- Steam added to keep coal below ash softening point in dry ash version. Results in high H₂ to CO ratio
- Most experience with lignites and lower rank coals. Bituminous coals need mechanical stirrer
- Atmospheric pressure units (Wellman etc) once widely used are not suitable for most current gasification applications
- BGL slagging version has some improvements over dry ash but limited commercial experience (one unit at Schwarze Pumpe)

2. Fluidized-Bed Gasifier



Fluid Bed Gasifiers – Main Features (KBR, HT Winkler, U Gas etc)

- Dry coal feed 1/8" minus
- Steam added to control temperature below ash softening , however GTI U Gas and KRW piloted ash agglomerating mode
- Should operate at temperature sufficient to destroy tars yet not slag.
- Lower carbon conversion than entrained dependent on coal reactivity
- Main experience low rank coals. Poor carbon conversion with bituminous coal and pet coke
- Syngas contains CH₄ so not well suited for synthesis of Hydrogen, Ammonia, Methanol or DME but OK for SNG.
- Can be either air blown or Oxygen blown
- Need scale up in pressure and to commercial size
- Three velocity modes : Bubbling bed <3 fps (GTI U Gas, KRW), Circulating 8-16 fps (HT Winkler, GRI U Gas) and Fast or Transport (KBR) 20-45 fps.

3. Entrained-Flow Gasifier (GE, COP, Shell, Siemens, MHI etc)

© 2007 Electric Power Research Institute, Inc. All rights reserved.

Entrained Flow Gasification - Main Features

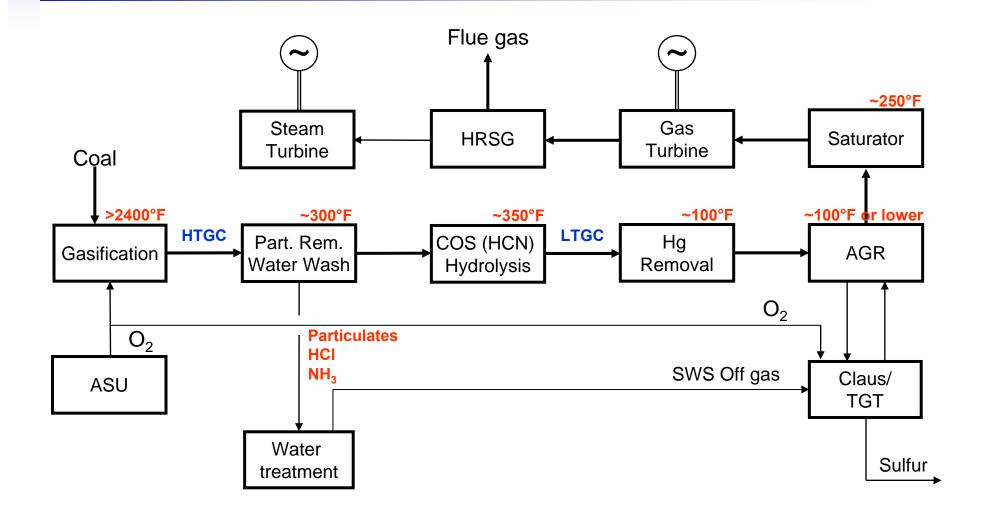
- Operates in the slagging region 2400-3000F. Inert slag produced.
- No troublesome tars and very low CH₄ in single stage gasifiers
- Single stage gasifiers (GE, Shell) very suitable for Hydrogen, Ammonia, Methanol and F-T production
- In two stage gasifiers outlet temperature decreases and CH₄ content increases as more coal is fed to the second stage (COP, MHI).
- Slurry fed gasifiers can be run at up to 1000 psig (Eastman)
- Slurry fed gasifier (GE, COP) efficiency deteriorates and oxygen usage increases with high moisture and high ash coals
- Dry coal fed gasifiers (Shell, Siemens/FutureEnergy, Eagle, MHI) need pre drying of high moisture coals for reliable feed control but can handle a wide range of coals.
- GE, COP and Shell all proven at commercial size in IGCC plants.

© 2007 Electric Power Research Institute, Inc. All rights reserved.

Gasification Process Selection

- Selection depends upon:
- Product/Application Hydrogen, Synthesis (Ammonia, Methanol, Fischer-Tropsch liquids), SNG, Power only, Co-production or Polygeneration
- Coal types or range
- Overall Plant/Project Objectives
 - Lowest Cost-of-Electricity (COE) ?
 - Highest Efficiency? Lowest dispatch cost?
 - Maximum CO₂ capture?
 - Near Zero (Minimal) Emissions?
 - Lowest cost of product ?

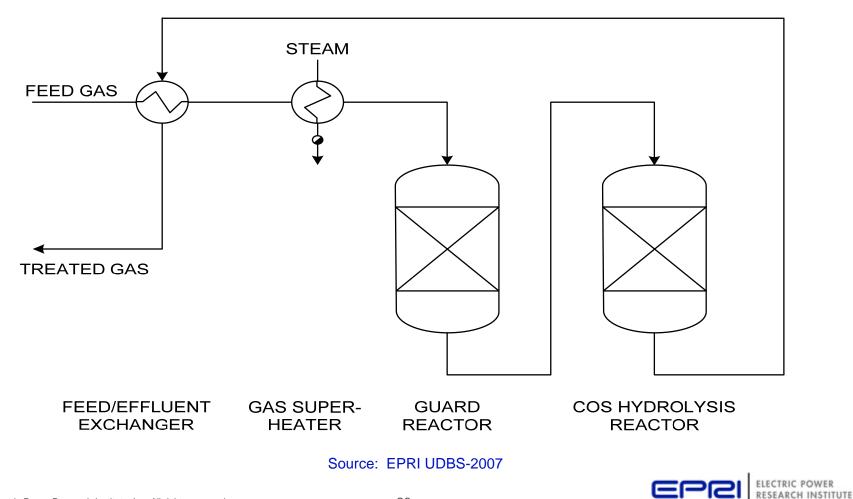
No Single "Best" Gasifier – "Best" Depends on Project Requirements



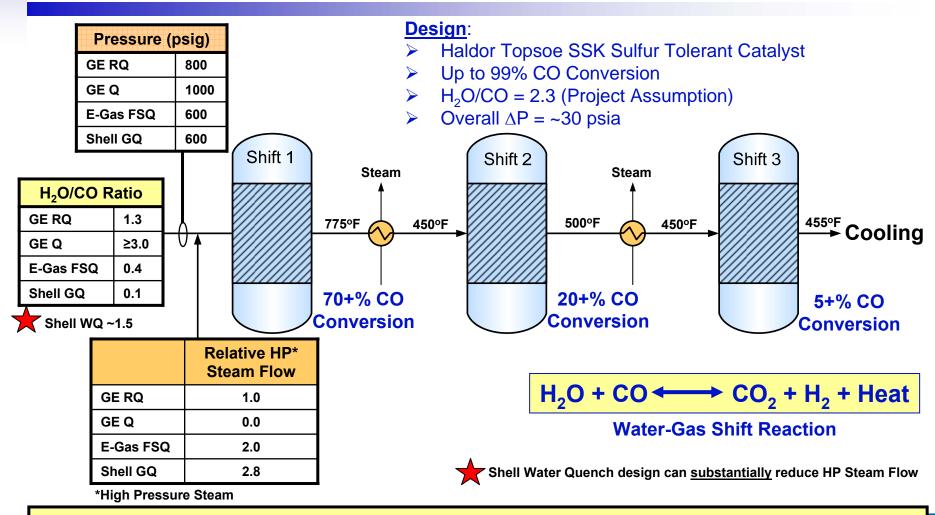
IGCC/Gasification Status for CO₂ Capture

- GE gasifiers with full or partial water quench provide best CO₂ capture economics for bituminous coals
- COP partial slurry quench (PSQ) design (ala Wabash) includes some water quench and lower CH₄ production
- Shell gasifiers offer high efficiency over wide range of feed stocks. Water quench design is in development.
- Siemens gasifiers include partial water quench and handle wide range of feedstocks
- Selexol and Rectisol processes for CO₂ capture are commercial and proven
- Gas Turbine vendors currently offering gas turbines that are enabled for Hydrogen firing

Simplified IGCC Block Flow Diagram


IGCC Environmental Attributes

- <u>Sulfur</u> is removed (99.5-99.99%) from syngas
- <u>NOx</u> emissions are controlled by removal of nitrogen-containing species from the syngas and by flame temperature moderation in the gas turbine with a downstream SCR possible
- <u>Particulates</u> are removed from the syngas by filters and water wash prior to combustion so emissions are negligible
- Current IGCC design studies with SCR plan ~3ppmv each of SOx, NOx and CO
- <u>Mercury</u> and other HAP's removed from the syngas by adsorption on activated carbon bed
- <u>Water</u> use is lower than conventional coal
- <u>Byproduct</u> slag is vitreous and inert and often salable
- <u>CO</u>₂ under pressure takes less energy to remove than from PC flue gas at atmospheric pressure



COS Hydrolysis / Simplified PFD

Process Schematic

Water-Gas Shift Reactors

Steam injection requirements have significant impact on plant performance

ELECTRIC POWER RESEARCH INSTITUTE

Mercury Capture in IGCC

- Capture on sulfur impregnated activated carbon
- Standard natural gas application for LNG plants
- In syngas service at Eastman Chemical Co. since 1984
- Capture rate ~94% of vapour phase mercury
- Bed life ~ 2 years
- Spent carbon to hazardous landfill

Source: Trapp, 2002

IGCC CO₂ Capture Technologies Current & Developmental Systems

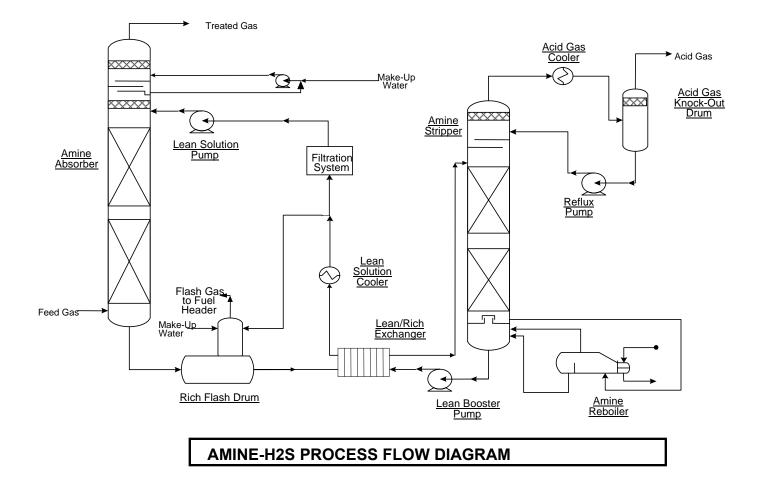
Currently Available Technologies

- MDEA
- UOP Selexol
- Linde Rectisol

Developmental Physical Solvent Absorption

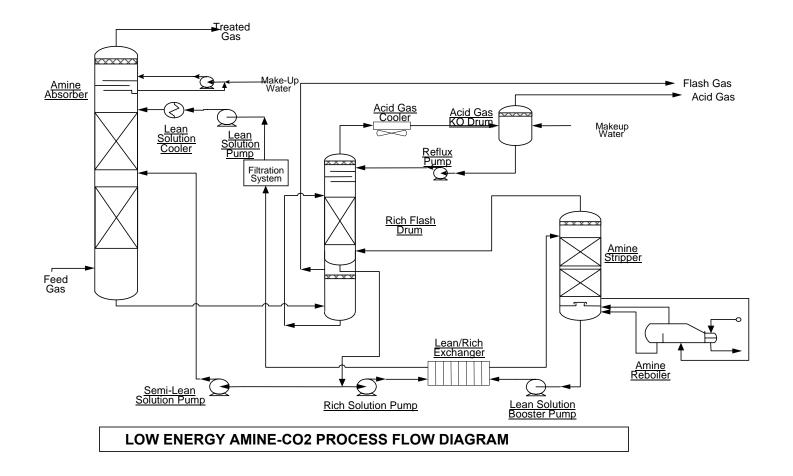
• GTI & Uhde – Morphysorb Solvent Absorption

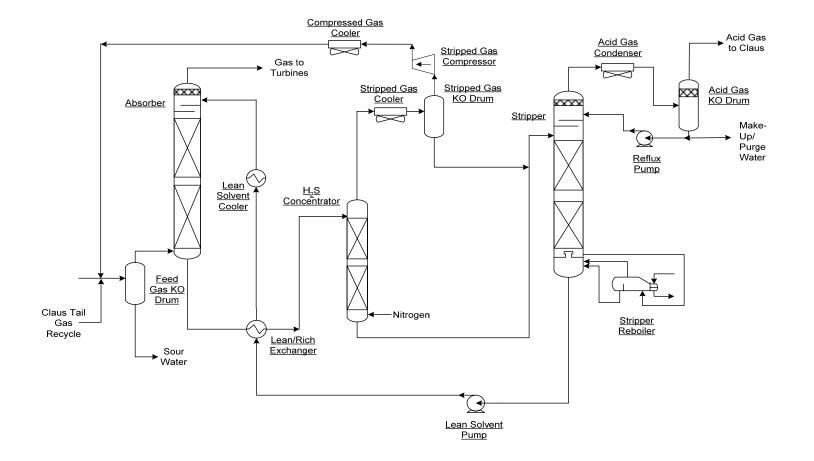
Developmental Membrane CO₂/H₂ Separation


- NETL & Eltron H₂ Transport Membranes (HTM)
- RTI & Air Liquide Reverse Selective Polymeric Membranes

Other Developmental Technologies (NETL + Other Research Organizations)

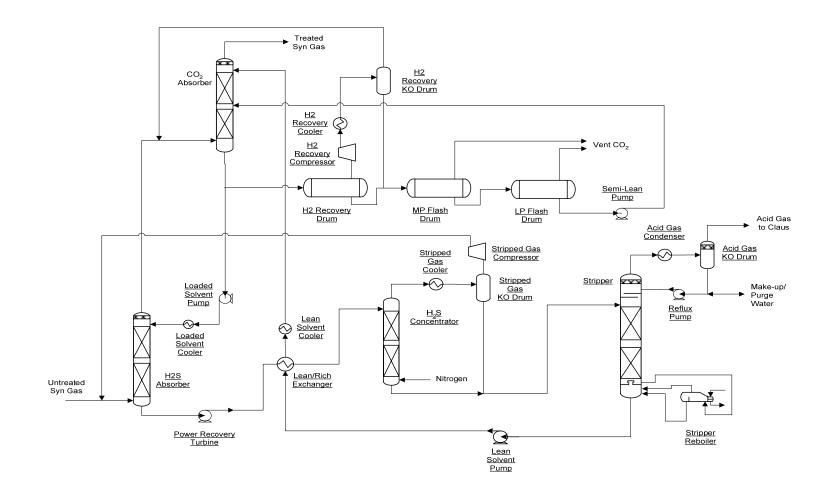
MDEA Process for IGCC


Process Flow Diagram: H₂S Capture Only

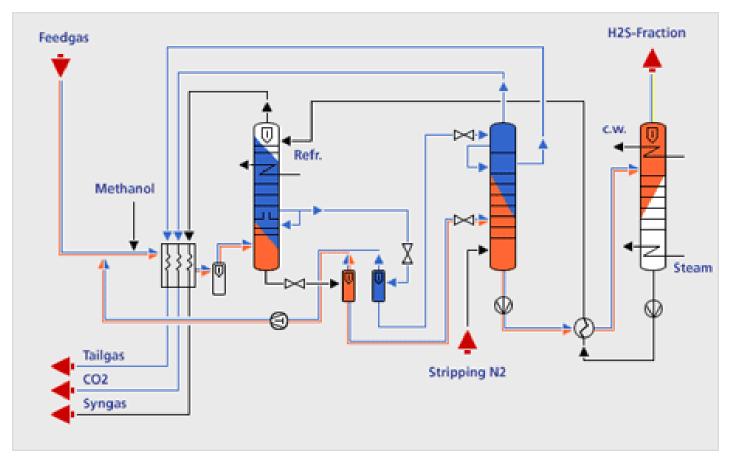

MDEA Process for IGCC

Process Flow Diagram: H₂S and CO₂ Capture (Low energy design)

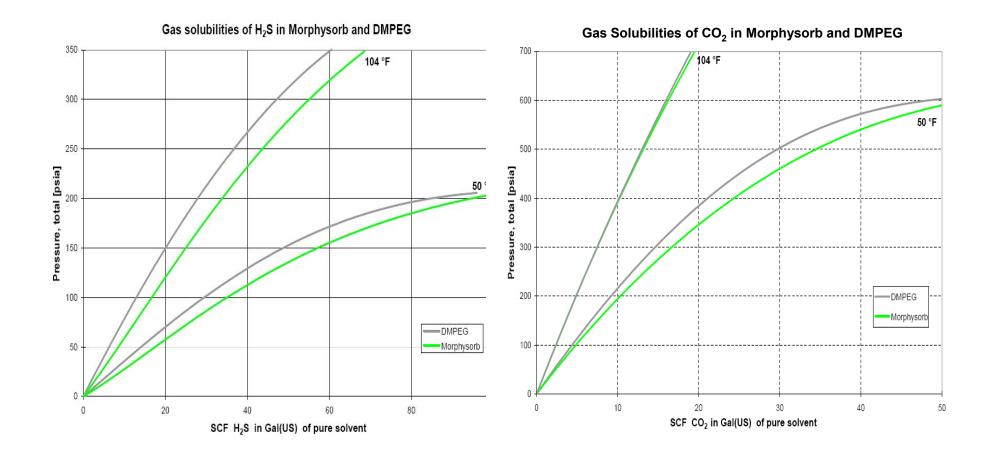
© 2007 Electric Power Research Institute, Inc. All rights reserved.


UOP Selexol Process for IGCC *Process Flow Diagram: H*₂S *Capture Only*

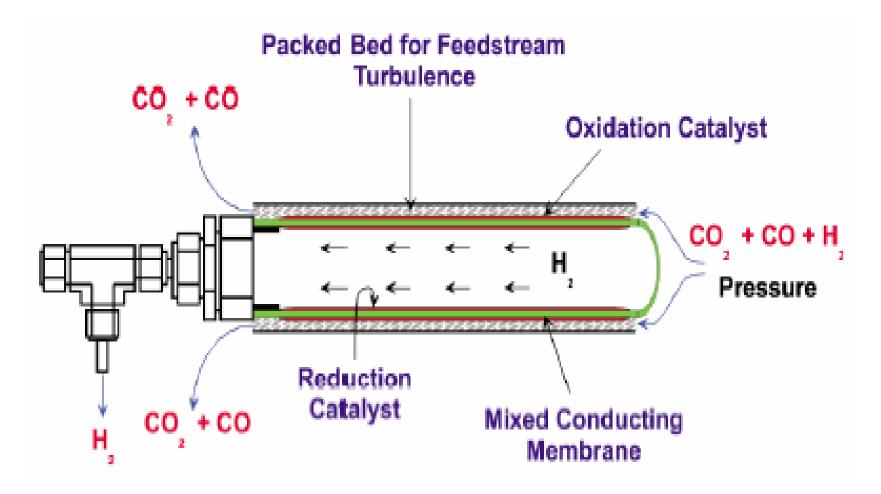
UOP Selexol Process for IGCC


Process Flow Diagram: H₂S and CO₂ Capture (4 tower design)

Linde Rectisol for IGCC


Process Flow Diagram: H₂S and CO₂ Capture (3 tower design)

Source: www.linde-anlagenbau.de/process_plants/hydrogen_syngas_plants/gas_processing/rectisol_wash.php



Morphysorb Solvent Process H₂S & CO₂ Solubility – Morphysorb vs. Selexol (DMPEG)

Hydrogen Ion-Transport Membranes Process Drawing

Source: Eltron 2005

© 2007 Electric Power Research Institute, Inc. All rights reserved.

Reverse Selective Polymer Membranes *Technology Description*

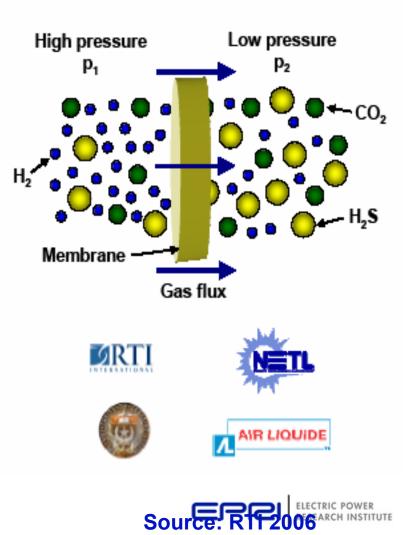
Opportunity

Hydrogen production

 Steam reforming or gasification of hydrocarbon fuels, followed by water gas shift reaction

Problem

H₂ product contaminated with CO₂ byproduct and other polar, acid gases (H₂S, COS, etc.)


Technical approach

Reverse-selective membranes for H₂ purification

- Bulk removal of acid gases (CO₂, H₂S)
- Selective permeation of larger acid gases over smaller H₂

Project Team

- RTI International
- The University of Texas at Austin (Academic partner)
- MEDAL, L.P./Air Liquide (Industry partner)
- DOE/NETL (Federal government support)

Development Activity for IGCC *Key Long-Term Research Projects*

- Stamet pump for dry coal feed
- AP ITM Oxygen process (note: single point failure, no other ASU improvements being funded, need more processes)
- Advanced sulfur removal processes (high temperature or low energy)
- Advanced H₂ and CO₂ separation processes (Solvents or Membranes)
- Advanced H₂-fired combustion turbines (GE and Siemens are current contractors for DOE work)
 - Results need to be extended to H-class CTs
- RamJet CO₂ Compressor (heat recovery improvement)
- Fuel Cell development
- FutureGen
 - Should provide first opportunity to test many of the items above at reasonable scale and realistic conditions

- SRI International, RTI, & NETL working to quantify the impact of contaminants on fuel cell operation
- TDA Research is researching a catalyst that can remove Arsenic at high temperatures that may also remove some Selenium
 - Testing of system at PSDF with Southern Company should be underway
 - Removal of As and Se would be beneficial for GT and WWT
- Others...?

EPRI may be able to provide support: Contact us with your ideas

Questions and Discussion

© 2007 Electric Power Research Institute, Inc. All rights reserved.