CHARACTERIZATION OF THE ORGANIC FRACTION OF ATMOSPHERIC AEROSOLS

Andrea Polidori¹**, Barbara Turpin¹*, Ho-Jin Lim¹, Lisa Totten¹, Cliff Davidson²

¹Rutgers University, Department of Environmental Sciences, NJ
²Carnegie Mellon University, Department of Civil Engineering, PA

* e-mail: turpin@aesop.rutgers.edu **e-mail: apolidori@envsci.rutgers.edu **web-page: www.eden.rutgers.edu/~polli
SPECIES CONTRIBUTIONS TO PM MASS CONCENTRATIONS

• The concentration of particulate organics is generally estimated by multiplying the measured concentration of organic carbon (OC) by a factor of 1.2 to 1.4.

• This factor, which is an estimate of the average molecular weight (OM) per carbon weight for the organic aerosol (OM/OC), stems from very limited studies conducted during the 1970s (Grosjean and Friedlander, 1975).

• Recent investigations suggest that 1.4 is the lowest reasonable estimation for the OM/OC value for an urban aerosol, and that 1.4 does not accurately represent the OM/OC value for a non-urban aerosol (Turpin and Lim, 2001).
SPECIES CONTRIBUTIONS TO PM MASS CONCENTRATIONS

• Based on a recent literature review (Turpin and Lim, 2001), ratios of 1.6 for urban aerosols and 2.1 for non-urban aerosols appear to be more accurate (non-urban aerosols tend to be more oxygenated).

<table>
<thead>
<tr>
<th>COMPOUND CLASS</th>
<th>MWt/CWt</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-Alkanes (C23-C34)</td>
<td>1.2</td>
</tr>
<tr>
<td>Aliphatic dicarboxylic acids (C2-C9)</td>
<td>1.7 – 3.8</td>
</tr>
<tr>
<td>Multifunctional aliphatic acids (C3-C6)</td>
<td>2.5 – 3.1</td>
</tr>
<tr>
<td>Aromatic polycarboxylic acids (C8-C10)</td>
<td>1.7 – 2.1</td>
</tr>
<tr>
<td>PAHs (C6-C24)</td>
<td>1.0 – 1.1</td>
</tr>
<tr>
<td>Carbonyls (C2)</td>
<td>2.4</td>
</tr>
<tr>
<td>Sugars (levoglucosan, C6)</td>
<td>2.3</td>
</tr>
</tbody>
</table>

OBJECTIVES

• Development of an **analytical methodology** to characterize the organic component of the atmospheric aerosols.

• Estimation of the organic molecular weight per carbon weight ratio for the Pittsburgh area (**OM/OC ratio**).

• **Qualitative analysis** of the different fractions of the organic PM.
DETERMINATION OF OM/OC FOR THE PAQS SAMPLES

24-hour samples (July 2001-August 2002)

PM2.5 Inlet

8”×10” baked QFF

65 samples were selected throughout the year…

…sonicated for 15min in a mixture of HEXANE, DICHLOROMETHANE, and ACETONE (1:1:2)…

…and Soxhlet extracted in the same mixture of solvents

The extracts were filtered…

…and applied on the top of a glass column packed with Silica Gel
DETERMINATION OF OM/OC FOR THE PAQS SAMPLES

Nitrogen stream

Mass recoveries varied between 76 and 97%

Average mass recovery = 80%

30×0.7cm glass column

1.5g of silica gel (Merck, 0.040-0.063 mm, activated at 150 °C for 3h).

1.4ml/min

HEXANE (15ml)

DICHLORO METHANE (15ml)

ETHYL ACETATE (15ml)

ACETONE (15ml)

METHANOL (15ml)

Average mass recovery = 80%

OM

OC

OM

OC

OM

OC

OM

OC

OM

OC

OM

OC

OM

OC
DETERMINATION OF OM/OC FOR THE PAQS SAMPLES

- All extracts/fractions were also analyzed by ion-chromatography (IC) to determine the amount of inorganic species present in each extract/fraction.

\[
\cdot (\text{OM})_{\text{extract/fraction}} = (\text{OM}_{\text{extract/fraction}} - \text{OM}_{\text{blank}} - \text{inorganics})
\]

\[
\cdot (\text{OC})_{\text{extract/fraction}} = (\text{OC}_{\text{extract/fraction}} - \text{OC}_{\text{blank}})
\]
THE DIFFERENT FRACTIONS

- The mass percentage of the acetone-soluble and the methanol-soluble fractions (4+5) varied between 45 and 74%.

- The mass percentage of the dichloromethane-soluble and the ethylacetate-soluble fractions (2+3) varied between 7 and 35%.

- The mass percentage of the hexane-soluble fraction (1) varied between 25 and 46%.
• The results confirm that **OM/OC increases with the polarity of the fraction** (the most polar compounds tend to be more oxygenated).
• Two independent OM/OC estimates were obtained for each sample: one estimate from the analysis of the extracts and one estimate from the analysis of the fractions. These independent OM/OC estimates are in good agreement.
THE DIFFERENT FRACTIONS

Polarity of the fractions

\[
\left(\frac{OM_{\text{fraction}}}{\sum OM_{\text{fractions}}} \right) \times 100
\]

\[
\left(\frac{OC_{\text{fraction}}}{\sum OM_{\text{fractions}}} \right) \times 100
\]
• OM/OC seems to be positively correlated with the amount of secondary OC estimated during PAQS (Cabada et al., 2004, Polidori et al., in preparation). However, the variation of OM/OC may also be affected by other factors (e.g. wood smoke production).
CONCLUSIONS

• The average OM/OC ratio for the Pittsburgh area was estimated to be 1.9

• The lowest estimated OM/OC value was 1.3 and the highest was 2.8

• Between 45 and 74% of OM was in the two most polar fractions

• OM/OC seems to be positively correlated with the amount of secondary OC estimated during PAQS
AKNOWLEDGEMENTS

This research was supported by US EPA and DOE through the Supersite Program and Electric Power Research Institute. We gratefully acknowledge the hard work of the Carnegie Mellon University faculty and students and their valuable contributions to this work.